Superexponentiation

Author(s): Nick Bromer

Source: Mathematics Magazine, Vol. 60, No. 3 (Jun., 1987), pp. 169-174
Published by: Mathematical Association of America

Stable URL: http://www.jstor.org/stable/2689566

Accessed: 23/02/2009 14:43

Y our use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of ajournal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the
scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that
promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to
Mathematics Magazine.

http://www.jstor.org


http://www.jstor.org/stable/2689566?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=maa

Superexponentiation

Nick BrRoMER
Bryn Mawr College
Bryn Mawr, PA 19010

The operations of addition, multiplication, and exponentiation are the first three of an infinite
sequence of operations. In view of their importance in mathematics and physics, I will call them
basic operations.

Generalizing from the first three, we see that each basic operation after the first is derived
from the previous one according to the following definition:

Let * be a basic operation which is defined on some number x, which I will call the operand.
We can define a new, higher-order operation * * by

X*kkpn=X%X kX% - *x,
where the number of x’s appearing on the right is a positive integer n, which I will call the
exponent.

For example, x multiplied by 4 is equal to x+ x + x + x. We can denote this, using the
definition’s symbolism, by 4 + + x.

I will indicate the next higher order of operation after * * by * * *. Thus, 1.4 cubed can be
denoted by 1.4 + + + 3.

The arrow operation

Using the above definition, let us investigate superexponentiation, the next basic operation
after raising to powers. Since “superexponentiation” is such a mouthful, I will call it the arrow
operation, and denote it by the vertical arrow symbol first used by Donald E. Knuth [1].

As soon as we try to define the arrow operation, a problem arises. The sequence of operations
bifurcates: two arrow operations are possible. The reason for this is that exponentiation is not
commutative.

To make this clear, let us first examine the previous level. When we create exponentiation from
multiplication, the association of the operands makes no difference, since multiplication is
commutative. Thus

(x(x(x))) = (((x) x) x),
and so x" has only one definition.
In the case of repeated exponentiation, parentheses make a difference:
x*9 and (x*)”

have different values, in general.

I will call the form on the left above, in which operands are added onto the left side of the
parentheses, the left mode of superexponentiation, and I will denote it with the symbol 7. For
example,

314 =351,
Similarly, I define the right mode by the symbol |. Thus
314=[(3%)]".
Operations of orders higher than arrow may be indicated by conjunctions of arrows in the
manner of the definition (4} |3 =(414) |4, for example) with the added stipulation that the

arrows are executed from left to right (that is, (4714)14=4113, and 4, (414)=4] 13). This
convention is arbitrary—the arrows could as well have been read right to left.

VOL. 60, NO. 3, JUNE 1987 169



As long as we restrict ourselves to positive integral operands, all these operations will be
defined.

The numbers that result from these higher-order basic operations quickly become huge. For
example, 1014, which also goes under the name “googolplex,” is a number so big that it is
physically impractical to write down using exponential notation. (It seems that each order of
basic operation allows one to write down numbers that are inconveniently large in the notation of
the next-lowest level.) The arrow notation thus opens new realms of magnitude [1], [2], [3].

We can note that for any basic operation *, 2#2 = 4. This assertion is readily proved: since
x*x=x%*2, 2%2=2xx2 The statement follows by induction from 2 + 2 = 4. Also note that
for * other than +, x *1 = x (by definition).

Arrow functions

Since x 1 »n and x | n are defined for x positive real and n positive integral, we have a family
of continuous functions. Graphs of the basic functions f(x)=x1n and f(x)=x|n for n=2,
3,4,5,6,and 7 are shown in FIGURES 1 and 2.

x 17—l J/—x12
200}
f(x)
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x15
A—x 13
00005 1.00 2.00 000550 1.00 200
x p
Ficure 1 FIGURE 2

Only positive x-values are shown because x* (that is, x 12 or x |2) is pathological in the
negative x region (and, hence, so are the other functions). It is undefined for irrational x, and
jumps about among imaginary, positive, and negative values for rational x less than zero.

The “wagging-tail” function x 1 n has very interesting behavior as n goes to infinity. Its value
quickly goes to infinity for x greater than e to the 1/e power (1.44...) and is less than e for x
less than e to the 1/e. For x less than 1/e to the e power (0.0659...) it bifurcates into two
values which alternate as n is incremented. The value of the function at the bifurcation point is
1/e. (All of these values were found empirically. Readers may be able to derive them.) To the
best of my knowledge, the x 7 n function was first investigated in the early 1970’s by A. Guyton
(private communication).

The bifurcation is shown in FIGURE 3, in which a plot of f(x) = x 11000 is superimposed on a
plot of g(x) = x 11001. (The two functions are virtually identical to the right of the conjunction
point, so that only one line appears there.) The x-scale is logarithmic.

Arrow functions with negative exponents

Single-arrow functions are defined above for positive real operands and whole number
exponents. The next step is to try negative integers for exponents. We can do this by figuring out
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a process that will reduce the exponent of an arrow function by one: repeating the process, we
will get negative exponents.

To change x T n to x T(n— 1), we can take the logarithm to the base x of x 1 n, which gives
x T(n—Dlog x = x 1(n—1). If we do this n times to the function x 1 n, the result is 1, which we
can define as x 10. Repeating the procedure, we get x 1(—1) =logl =0, and x 1(—2) =1og0 =
minus infinity. It would seem that there is no x T n for n less than —2.

With the | operation we have more success. The reducing operation here is raising to the
(1/x) power: (x | n) to the (1/x) power is x | (n — 1). This can be applied any number of times
if x is positive real.

Some of the negative | functions are shown in FIGURE 4.
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FIGURE 4
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Inverse operations

Once an operation is generated, we can define an inverse operation which “undoes” the work
of the operation. I'll say that % is the inverse of * if

(x%n)*n=x.

The number y = x % n, where n is a positive integer, I will call “the nth asterisk root of x”
(generalizing the term used for exponentiation’s inverse).

For example, —5 is the 8th additive root of 3; 1/5 is the 15th multiplicative root of 3;
1.414... is the 2nd exponential root of 2; 3 is the 3rd superexponential (left mode) of 19683; and
1.559... is the 2nd superexponential root of 2.

The last-mentioned number is transcendental, by the following argument. If x* =2, then
x(Inx)=In2 and so x=(In2)/(In x). Now, the Gelfond-Schneider Theorem [4] says that if
y=(na)/(ln b), where a and b are algebraic, then y is either transcendental or rational. So x
must be either rational or transcendental. Suppose, for contradiction, that x is rational. Let it
equal p/q, where p and g are relatively prime (the fraction is in lowest terms). Then
2=(p/9)?/? and so

pP=24g".

By the relative primeness of p and ¢, there are three cases: (1) both p and g are odd, which
leads to a contradiction in the above equation (implying one side odd and the other even); (2) ¢
is even and p is odd, which is similarly a contradiction; and (3) p is even and ¢ odd. In this last
case, there are integers m and r such that p =2"r and r is odd. Equating exponents of 2, we get
mp = q or m = q/p. But this contradicts the assumption that p and ¢ are relatively prime, since
the ratio of relative primes cannot equal an integer. Each case leads to a contradiction. Therefore
x is not rational, and so x is transcendental.

As we ascend the orders of basic operations, it seems that every new basic operation’s inverse
generates roots which are either a new class of reals, or else a new type of number. Subtraction
generates negative numbers, division creates fractions, and exponential roots give us algebraic
numbers. Exponential roots of negatives create imaginaries.

The preceding two paragraphs lead me to this conjecture: that the arrow operations’ inverse
operations generate a countable infinity of real superroots, which are, in general, transcendental.
I propose to call these superalgebraic numbers.

There are also superroots which are apparently undefined. The equation x |[2=1/2, for
instance, has no solution in the reals, and seems not to have a complex solution. (I have had no
luck with the problematic question of complex solution, but readers may be able to find one, or
prove impossibility.) Thus one might say: there is no square superroot of one-half. Historically,
this sort of situation has always resulted in the creation of new types of numbers, whose names
reflect the idea that they don’t make sense (“irrational”), don’t exist (“imaginary”), or are simply
unpleasant (“negative”). I hope that if anyone ever discovers a consistent way of defining the
unreal superroots, he will name them in this tradition.

Note that numbers less than 1 always have two right-mode superroots, and have two left-mode
superroots if the root is even.

Fractional exponents and |

Let’s try to get a consistent way to define x | ( p/q), where p and ¢ are positive integers. This
would give, in the limit, a definition of x | x for real x, which would immediately give us
double-arrow continuous functions f(x)=x| | n or f(x)=x | T n, n a whole number.

Here it is important to proceed by analogy to the established basic operations, lest we be led
astray (as I was) by the following formula. It can be shown that all of the positive and negative
integer exponent | functions are generated by

x| p=x""
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This formula gives us values for any fraction p, not only integers. Are these values acceptable for
defining x | | n? I now feel they are not, because this definition is not analogous to the way the
lower-order operations define fractional exponents.

Let’s look at how fractional exponents are handled in multiplication and exponentiation.
When multiplying a number by a fraction p/q, we multiply by p and then take the gth
multiplicative root (i.e., divide by g). Similarly, to raise a number to a fractional exponential
power p/q, we raise the number to the pth power, and then take the gth exponential root.

To continue the process with the arrow operation, we interpret y=x/(p/q) as y=
(x| p)l g—and we run into trouble. Here’s why: if we raise a number to the superpower 2 /3, it
is not the same as raising it to the superpower 4/6; the two exponents yield different values.
(These different values have nothing to do with the fact that there are double roots of numbers
less than 1.) This means that the function y =x | x is neither continuous nor single-valued,
which in turn means that the next level of basic continuous functions is undefined.

Similar problems arise with 1, with the added complications associated with the “wagging-tail”
behavior of f(x)=x1n for0<x<1.

The values of x | (np/nq) seem to converge toward a limit as n goes to infinity (which is not
equal to the value given by the formula above for x | p). This raises the interesting possibility
that, using a limiting process, fractional exponents of the arrow functions can be defined in a way
analogous to lower-level basic operations. To explain: if we pick a number m as the denominator
of the exponential fraction, we will get a series of points. As m goes to infinity, the points become
a (we hope) smooth curve. This method is difficult to investigate, because the arrow function
causes overflow in a computer when only modestly large operands and exponents are inserted.

If the problems of the above program were overcome, perhaps the double-arrow functions
could be graphed. Because (x| p)ig+#(x]q)l p in general, there would probably be two
classes of such functions.

Conclusions

A hierarchy of operations on the positive integers can be denoted using the arrow symbol.
These operations may be of interest to number theorists, as perfect squares, primes, and so on can
be generalized into higher orders of basic operations.

The family of continuous arrow functions is analogous to linear functions at the multiplicative
level and to quadratics, cubics, and so on at the exponential level. The arrow functions may find
an application in the sciences. Nature uses the first three basic functions profusely: why should
she not use arrow?

A new set of numbers, the real superroots, has been conjectured to be transcendental. If a
continuous double-arrow function can be developed, another set should result.

It is not clear whether or not the sequence of families of basic continuous functions can be
developed beyond the single arrow level. It is clear that more symmetries are lost, and more
complications arise, with each new basic operation. While it is unlikely that we will be able to
penetrate this mathematical thicket very far, the attempt should be interesting.

Acknowledgements. I wish to thank Neal Abraham, Teymour Darkosh, John Lavelle, and Rodica Simion for
helpful conversations.
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Non-Associative Operations

N. J. Lorp
Tonbridge School
Kent TN9 1JP, England

In many algebraic structures the associativity of an operation is postulated as an axiom.
However, there are important non-associative operations (e.g., subtraction, division, vector
multiplication) and the purpose of this article is to discuss the extent to which an operation is
non-associative.

An operation * defined on a set S is associative only if both ways of inserting parentheses in
the product a; * a, * a;, namely, (a; * a,)* a; and a, *(a, * a,), give the same result for all q,,
a,, and a; in S. For some non-associative operations on some sets the non-associativity is
incomplete; that is, for products of four or more factors, two different ways of inserting
parentheses (‘bracketing’) give equal results. For example, with the operation of subtraction on
the set of real numbers, it is true that a; — (a, — (a3 — a,)) = (a; — (a, — a;)) — a, for any real
numbers a,, a,, a;, and a,.

It thus makes sense to say that subtraction of real numbers has “limited” non-associativity.
Since one cannot find two ways of bracketing a; — a, — a, that lead to the same answer for all
a,, a,, and a,, but one can find two bracketings of a, — a, — a; — a, that always lead to the
same result, this leads to a characterization of the non-associativity of subtraction of real
numbers as “having depth 4”. More generally, the depth of non-associativity, d(*), for a
non-associative operation on a set S may be defined as:

min{n > 3: there exist two bracketings of a;* --- *a, that give the same
result for every a,,...,a, in S}

oo if, for each n>3, there exist elements a;,...,a, in S for which all

n

bracketings of a, * - - - * a, give different results.

a(+) =

In the latter case, we will say that * has wunlimited non-associativity, abbreviated UNA.
For convenience, we shall denote by N(n) the number of ways of inserting parentheses to
define unambiguously a, * - -+ * a,.. So, for example, N(4) = 5 corresponding to the bracketings

(a1*(ay*a3))*ay, ((ay*ay)*as3)*a,, a;+((ay*ay)*ay,),
ay*(ay*(ay*a,)), (ay*ay)*(a;*a,).
(For more information on N(n), in particular a derivation of the formula

(2n-2)!

N(n) = n(n—1)1°

see [1] or [2].)
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