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NONASSOCIATIVE NUMBER THEORY 

TREVOR EVANS, Emory University 

Introduction. In several papers I. M. H. Etherington has studied the algebra 
of exponents of the general element in a nonassociative linear algebra and he 
has called these systems logarithmetics. If the linear algebra does not satisfy any 
identities the corresponding logarithmetic bears a close resemblance to the 
natural numbers. In fact, in [3] Etherington has shown that the elements of this 
particular logarithmetic can be defined in terms of partitioned classes in com- 
plete analogy to the Frege-Russell definition of the natural numbers as classes 
of classes. I t  is not too surprising then that we can also characterize this logarith- 
metic by a set of postulates analogous to the Peano postulates for the natural 
numbers. We do this in Section 1 and develop the basic properties of the 
logarithmetic in a manner paralleling the usual development of the natural 
numbers. * 

We proceed to study the number theory of this logarithmetic. Several of the 
theorems in Section 1 and 2 including the "fundamental theorem of arithmetic" 
have been obtained by Etherington, although our derivations are in general 
quite different. Some of the standard theorems and conjectures of ordinary num- 
ber theory have trivial analogues in this new number theory but a little more 
effort is needed to prove Fermat's Last Theorem. 

By analogy with the extension of the natural numbers to the ring of positive 
and negative integers, we extend the logarithmetic to a system in which sub- 
traction is always possible. The system so obtained is the left neoring of Bruck's 
recent paper [2]. The fundamental theorem of arithmetic has to be proved anew, 
since there are many more primes than just the original primes and their asso- 
ciates. In this new system we are also able to introduce the analogues of finite 
arithmetics and congruence by using some of the results of [ 6 ] .  

We conclude by mentioning a few problems and possible directions for fur- 
ther work. 

1. Peano-like postulates for the nonassociative natural numbers. Peano's 
postulates characterize the natural numbers as a set closed under a unary 
operation and satisfying certain other conditions. If we replace the unary opera- 
tion by a binary operation and make the corresponding changes in the postu- 
lates we obtain the following system. 

Unde$ned terms: The set of nonassociative natural numbers, the elements 
of which we will just call numbers;t the binary operation of addition. 

* See, for example, the first few pages in [s].
t We will always use the words "positive integern in referring to the natural numbers of ordi- 

nary arithmetic. 
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Postulates : 

(i) 1 is a number, 
(ii) to every pair of numbers a ,  b there corresponds a third called the sum 

of a and b and written a+b, 
(iii) there are no numbers a ,  b such that a +  b =1, 

(1) (iv) if the numbers a ,  b and c, d are such that a+b =c+d, then a = c  and 
b=d, 

(v) if a set of numbers contains 1, and if whenever it contains numbers 
a ,  b then it contains a+b, then the set contains all numbers. 
(The principle of nonassociative induction.) 

Thus our numbers are 1, l+l ,  1+(1+1), (1+1)+1, 1+(1+(1+1)), . . . . 
By postulate (v), every number except 1 can be expressed as the sum of two 
other numbers and postulate (iv) implies that this can be done in only one way. 
Also, by postulate (iv),addition is in general noncommutative since a+b =b+a 
implies a =b. Following Etherington, we will denote 1+1 by 2, 1+(1 + l )  by 3, 
l + ( l + ( l + l ) )  by 4, . . 

As an example of nonassociative induction we prove: 

THEOREM1. For all numbers a ,  b, a#a+b. 

Proof. Let Sbe the set of all values of a such that a#a+b  for any b. Scon-
tains 1 by postulate (iii). Let m, n E S .  If there exists a number b such that 
m+n =(m+n)+b, then m=m+n by postulate (iv), in contradiction to the 
assumption that mES.  Thus m + n E S a n d  so by the principle of nonassociative 
induction, S contains all numbers. 

An immediate consequence of this theorem is that there are no numbers 
a ,  b, c such that a+(b+c) = (a+b)+c. That  is, addition is completely nonasso-
ciative. Because of the lack of commutativity and associativity in addition, in-
troducing an order or partial order into the system does not seem to be very 
fruitful. One fairly reasonable definition is as follows. We first define "well-
formed part" of a number by (i) the only well-formed part of 1 is 1 itself, (ii) if 
a=b+c,  the well-formed parts of a are a itself and the well-formed parts of b 
and c. Now we define x 5y if x occurs as a well-formed part of y, and x <y if 
x <y but x #y. With these definitions we get a partial ordering* between num-
bers but unfortunately x <y does not imply x+z <y+z or z+x <z+y. However, 
with the definition of multiplication given below, x <y does imply z.x <z.y. 

We introduce multiplication a .b  (or ab) into our number system by 

* The partial order for N can be extended to a complete ordering as was pointed out to me re-
cently in conversation by R. H. Bruck and D. R. Hughes. Define a <b in N if (i) Ia 1 <I b 1 ;(ii) Ia 1 
= Ib I but al <bl, where a =al+az, b=bl+bs; (iii) I a1 = I bI and al =bl, but az< bz. Unlike the partial 
ordering given above, this ordering has all the usual properties. Another complete ordering of N 
is obtained by interchanging a1 and az, bl and b~in (ii), (iii). 
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Clearly this defines a product between every pair of numbers. We leave to the 
reader the proof of the next two theorems. Nonassociative induction is used on 
a in the first and c in the second. 

THEOREM2. 1. a  =a for all numbers a. 

THEOREM3. (ab)c =a(bc) for all numbers a, b, c. 

Some examples of calculation in our system are 

As an immediate consequence of the definition of multiplication the left- 
distributive law is satisfied. The cancellation properties of multiplication are 
given in the following theorems. 

THEOREM =ya, then x =y.4. If xa 

Proof. This is true for a =1. Assume that  i t  is true for a = m  and a =n. Now, 
if x(m+n) =y(m+n), expanding each side we get xm+xn =ym+yn. By postu- 
late (iv), xnz =ym, and so by our inductive hypothesis, x=y.  Thus the theorem 
is true for a =m+n, and so for all values of a by nonassociative induction. 

In order to prove the other cancellation law i t  is useful to introduce the con- 
cept of length of a number n. We mean by this the positive integer obtained from 
n by regarding + in the expression for n as the addition of ordinary arithmetic. 
We will denote the length of n by I nl .The following relations hold. 

i.e., m t l  ml is a homomorphism onto the positive integers. 

THEOREM5. If ax =ay, then x =y. 

Proof. We use induction on x .  When x is 1, consideration of the lengths of 
the two sides of the equation a = a y  shows that  y =l .  Consider the equation 
a(m +n) =ay. By the preceding sentence y cannot be 1 and so y =s +t for some 
numbers s, t. Then a(m+n) =a(s+t) or am+an=as+at. By postulate (iv), 
am =as  and an  =at. 

Hence, if am =as  implies m =s, and an =at  implies n =t, then a(m +n) =ay 
implies m+n =y. The theorem follows by nonassociative induction. 

We now have a fairly complete picture of our nonassociative number sys- 
tem. Every number in i t  can be obtained from 1 by a finite number of non-
associative additions. Multiplication, u(1) .v(l), of two of these numbers satis- 
fies u( l ) .v( l )  =v(u(l)), in complete analogy with multiplication in ordinary 
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arithmetic. Addition satisfies the uniqueness law, a+b =c+d implies a=c  and 
b =d. Multiplication is associative, has 1as an  identity, is connected with addi-
tion by the left-distributive law, and satisfies the usual cancellation laws. In 
the language of modern algebra, this system can be described as additively the 
free groupoid generated by 1 with a multiplication introduced by a .  b =b4, 
where 4, is the endomorphism of the groupoid determined by mapping 1into a. 

From now on, we will denote this system by N and call i t  nonassociative 
arithmetic. 

2. Number theory. We can now proceed with the development of the num-
ber theory of N. In view of the noncommutativity of multiplication we need the 
concepts of left-factor and right-factor. If a =bet, then b is called a left-factor of 
a and c is called a right factor of a. If b, c are not equal to 1or a ,  we call them 
proper left- or right-factors. A number, other than 1, having no proper left-
factors is called a prime number. Clearly, a prime number has no proper right-
factors either. A striking property of factors in nonassociative arithmetic is 
given in the next theorem. 

THEOREM6. If p i s  a proper left-factor of a ,  and a =b+c, then 9 i s  a left-factor 
of b and a left-factor of c. 

Proof. Since fig = a  for some q and # a ,  then q# 1. Thus q =m+n for some 
m ,  n. Then p(m+n) = a  and so pm +pn =b+c. By postulate (iv), pm =b, pn =c. 
That  is, p is a left-factor of both b and c. We note that  this theorem is not true 
if we consider right-factors instead of left-factors. 

In ordinary arithmetic we have the theorem that  if a prime is a factor of a 
product i t  is a factor of one of the numbers. The following theorem is similar. 

THEOREM7. If the prime p i s  a left-factor of the product a .  b, where a i s  not 1, 
then i t  i s  a left-factor of a. 

Proof. We use nonassociative induction on b. For b =1 the theorem is cer-
tainly true. Now if it is true for m ,  n and if b =m+n,  then p is a left-factor of 
a(m+n)  =am+an. But # # a ( m + n )  since f i  is prime and so by Theorem 6, 
p is a left-factor of am. Hence p is a left-factor of a by our inductive hypothesis. 

The  corresponding result for right factors is also true, but it is most easily 
obtained as a consequence of the following theorem. 

THEOREM8. (Thefundamental theorem of nonassociative ari'thmetic.) There i s  
only one way in which a number can be written as a product of primes. 

Proof. Let P I I I P I ~ I- plsl, q111ql21- qltl be two products of primes such 

that  plllPlzl - .plsl =q111q121 - . qlq. By Theorem 7, pill is a left-factor of q111 
and since qlll is prime, $ 1 1 1  =q l~ l .Then, by Theorem 5, plzl . . ~ 1 ~ 1 = q 1 2 1. ¶ [ t i .  

Continuing this, we get p l z l=qlzl, p l s l  . . .There must be the same num-
ber of factors in each product since otherwise we would eventually have 1 ex-
pressed as a product. 
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COROLLARY.If the prime p is  a right factor of the product a .  b, where b is not 1, 
then it is  a right-factor of b. 

For a.b when written as a product of primes must end with p by the theorem, 
and since this product of primes can be obtained by writing a and b separately 
as products of primes, 9 must be the last factor in the expression of b as a product 
of primes. 

The concept of factor can be extended by defining m to be a factor of a if 
a=smt. The concept of mutually prime in ordinary arithmetic has several 
analogues in nonassociative arithmetic. Two numbers, a, b are mutually left-
prime if they have no common proper left-factor, mutually right-prime if they 
have no common proper right-factor, mutually prime if one is not a factor of the 
other, and no proper right-factor of one is a left-factor of the other. I t  is easy 
to verify the following generalizations of Theorems 6 ,  7: 

(i) If m is a proper factor of a ,  not a right-factor, and a=b+c,  then m is a 
factor of b and of c, (ii) let m be a factor of a .b ;  if m, b are mutually prime, then 
m is a factor of a, or if a ,  m are mutually prime, then m is a factor of b. 

If a ,  b are two mutually left-prime numbers then a ,  a+b, (a+b)+b, ((a+b) 
+b) f b ,  . . . have no nontrivial left-factors by Theorem 6 ,  and so are all prime. 
Hence there are an infinite number of primes. An example of such an infinite 
sequence of primes is 2, 3, 4, . . . . The twin primes conjecture of ordinary 
arithmetic has a trivial generalization for, if R is any number, there exists an 
infinite number of pairs of primes of the form n, n +  k. The analogue of Gold-
bach's conjecture fails to hold by virtue of postulate (iv). However, another 
famous conjecture of ordinary arithmetic is provable in nonassociative arith-
metic. In  fact, an even stronger result than the original is true. 

THEOREM9. (Fermat's Last Theorem). There are no numbers x, y ,  z such that 
xlnl+ylnl =zlnl for any positive integral I nl greater than 111 .  

Proof. We obtain a proof by contradiction. Let x, y, z be numbers such that  
xin'+?I "1 =zlnI1where I nl is a positive integer greater than I 1I .  We note that 
(i) neither x nor y can be 1 since this would imply that xlnl+ylnl is a prime, 
(ii) I X I  + 

Since [ n  
y 1 l n l  = I zl I n [ .  
is greater than 1 11, zlnl has z as a left-factor and so by Theorem 6, 

both xlnl and ylnI have z as a left-factor. Let x and z be expressed as a product 
of primes in the form x=pl l lp lz l  . plll, z=q111q121. - .qltl. Then, since zu =xlnl 
for some number u, we have qlllplzl . . . qltlu=pll1pltl . plslv, where v=xln-'1. 

By Theorem 7 ,  q111=p111, q121=p121, . . Now I sl < 1 tl , for otherwise
1 zl -< 1 X I  , in contradiction to I x]  l n l  +1 y 1 1.1 = 1 zlln1. Hence, z=xa for some a 
and, similarly, z=yb for some b. 

We have then lzl = I x l . l a l ,  lzl = l y l  . Ibl.  Substituting in Ixllnl+lylln~ 
= l z l ~ ~ ~ f o rIx and ly l ,wege t  ~ l ~ / ~ a ~ ~ n ~ + ~ l ~ / ~ b ~ ~ ~ ~ = 1 . T h i s i s a c o n t r a d i c -
tion since for 1 nl >111, no positive integers 1 a \ ,  I bl satisfy such a condition. 
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3. Introduction of "negative integers." In ordinary arithmetic, zero and the 
negative integers are introduced in order that  subtraction always be possible. 
The same problem arises naturally in nonassociative arithmetic also. In N, sub-
traction can be defined between some pairs of numbers as follows. If m =$+n 
we can introduce the operation of right-subtraction m-n between m and n 
and write m-n = p .  If m =n+q,  we can introduce the operation of left-subtrac- 
tion* -n+m between m and n and write -n+nz =q. With these definitions 
we get the following properties 

Clearly these are properties we would like subtraction to have, and in a 
general nonassociative system they are the most for which we can hope. The 
problem now is to find a system containing N a n d  such that  left- and right- 
subtraction is possible between every pair of elements. More specifically, we 
want a system with two operations +, a ,  and such that  (i) the equations 
a + x  =b, y+a  =b have unique solutions, (ii) multiplication is associative, (iii) 
the multiplicative identity 1 generates the system, (iv) the cancellation laws 
hold, (v) the left-distributive law holds, (vi) with respect to the operation +, 
1 generates a subsystem isomorphic to N. Such a system is of the type discussed 
by Bruck in a recent paper [2] and called by him a left neoring. However, there 
are many left neorings satisfying the above conditions. We will choose the one 
which seems to be the most natural extension of N. 

Let L be the free monogenic loopt generated by 1 with the operation written 
as addition. This is the nonassociative analogue of the additive group of integers. 
The mapping l+a where a is any element of L determines an endomorphism 
+, of L and we can iiltroduce a multiplication into L by defining a S b  =b&. We 
will denote the resulting system by I and call i t  the left neoring of nonassocia- 
tive integers. In this section "number" will refer to an  element of I. 

An immediate consequence of this definition of multiplication is that  a(b+c) 
=ab+ac for all a ,  b, c. In addition, as is shown in [2], multiplication is associa- 
tive and the two cancellation laws of multiplication are satisfied. Since, addi- 
tively, I is a loop, we do have the required subtractioil properties, and the sub- 
system of I consisting of I ,  1+1, 1+(1+I) ,  . - . , etc. is isomorphic to N. We 
refer the reader to [2], [6], for a discussion of the algebraic structure of I. We 
wish to introduce here some analogues of ordinary number theory in I. For this 
reason we will use another approach to the system which has the advantage of 
an  explicit representation of its elements. 

Consider all expressions which can be generated by 0 and 1 with the three 

* Note that the - and + here do not exist independently, but are each part of the notation 
for the binary operation of left-subtraction. 

t For a discussion of free loops see [I], [4], [s]. 
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binary operations of addition a+b, left subtraction -a+b, and right subtrac- 
tion a-b. We call such expressions numerical expressions. An example is 
(4+(0 -1)) - ((1 +1)+(1+(-2 +I))), where 2, 4 have the usual meaning as 
abbreviations. 

Two numerical expressions are equal if and only if their equality follows 
from the following 

(i) a + O = O + a =  a, 

(ii) a - a =  - a + a = O ,  

(iii) a - 0 = - 0 + a = a, 
( 5 )  

(iv) ( a + b ) - b = a ,  - b + ( b + a ) = a ,  

(v) ( a - b) + b = a, b +  (-b+ a) = a, 

(vi) a - ( - b + a ) = b ,  - ( a - b ) + a = b ,  

where a, b are numerical expressions. 
Clearly (i), (ii), (iii) are properties we wish 0 to have, (iv) and (v) are the 

properties of subtraction we already have in N. Equations (vi) are actually con- 
sequences of the preceding equations and we list them merely for their useful- 
ness in computation. We remark that ( -a+b) is the unique solution of a + x  =b 
and b -a is the unique solution of y +a  =b. 

Our nonassociative integers are now defined as the classes of equal numerical 
expressions. A multiplication is introduced into the system by u(1) .v(l) =v(u(l)) 
where u,  v are numerical expressions. 

That  this system is I is a consequence of the results of [4], [5]. Another 
result from [4, Theorem 2.21, shows that in each class of equal numerical ex- 
pressions there is a unique expression of shortest length (here "length" refers to 
the number of 0's and 1's in the expression). Such a shortest numerical expression 
is characterized by the property that there is no application of equations (5) to 
the expression which will shorten it. We will call this the normal form of the 
class of equal numerical expressions and refer the reader to [4], [5] for a full 
discussion of these ideas. 

The following examples illustrate the rules of computation in I and some 
specific computations. 

(i) a . 1  = 1 . a  = a, 1 
(ii) a ( m  + n) = a.m + a.n,  

(iii)a.(m-n)=a.m-sen, I by the definition of multiplication, 

(iv) a*(-m + n) = - a . n  + a.n,  j 
(6) (v) a .0  = a(l - 1) = a - a =  0, 

(vi) 0 . a  = 0, by induction on the length of a, 

(vii) a ( 0 - 1) = 0 - a ,  a .(-1 +O) = - a + O ,  
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(viii) (0 - I) . (-1 + 0) = - (0 - 1) + (0 - 1).O = - (0 - 1) f 0 = 1, 

(ix) (1 - 2).  ((0 - 1) + 2) = (1 - 2). (0 - 1) + (1 - 2). (1 + 1) 

= (0 - (1 - 2)) + ((1 - 2) f (1 - 2)). 

The discussion of the number theory of I is complicated by the existence of 
units. As usual we define a unit to  be an element possessing a multiplicative 
inverse. In the ring of integers of ordinary arithmetic there are only two units 
but the left neoring I contains an infinite number. 

We will call the elements 0-1, 0-(0-I),  0-(0-(0-I)),  . . . the first, 
second, third, . . . right negatives of 1 and similarly, -1f 0, -(-1 +0) f 0 ,  
-(-(-1+0)+0, . . . the first, second, third, . . left negatives of 1. I t  is 
easily verified from equations (5) and (6) that  the product of the n th  left nega- 
tive and nth right negative is 1. 

I t  is not quite so easy to show that  these are the only units in I. We recall 
that  the product of two elements u ( l ) ,  v(1) of I is defined by u(1) .v(l) =v(u(l)). 
Hence we have to show that  the left- and right-negatives of 1are the only ele- 
ments of I which satisfy v(u(1)) =l .  This is an  immediate consequence of 
Lemma 2 in [5]. 

Since (0-1)2=0-(0-1), (0-1)8=0-(0-(0-1)), . . . and (-1+0)2 
= -(-l+O)+O, ( - l fO)a= -(-(-1+0)+0)+0, . . . ,theunitsof I a r e e x -  
actly the powers of 0 -1. 

We collect these results as a theorem. 

THEOREM10. The multiplicative group of units of I is the infinite cyclic group 
generated by 0 -1. 

As before b will be called a left-factor of a if there exists an  element c of I 
such that  b .c =a. If neither b nor c is a unit and a f 0, we say that  b is a proper 
left-factor of a. In the same way we define right-factor and proper right-factor. We 
note that  any number is a factor of 0. Two numbers a ,  b in I will be called 
associates if xay =b where x, y are units. 

LEMMA1. Ifa ,  b are left- (right-) factors of each other, then they are associates. 

Proof. If ax =b, by =a ,  then axy = a  or xy =1. Hence x, y are units. The proof 
for right-factors is similar. 

If a is a left- (right-) factor of b and b is a right- (left-) factor of a, then a =b 
unless both a and b are units. A proof of this leans heavily on the results of [4], 
[s],and so we omit it. 

In ordinary arithmetic, the primes in the ring of integers are simply the 
original primes in the set of natural numbers multiplied by the units. This situa- 
tion does not carry over to nonassociative arithmetic. In fact, a rather compli- 
cated situation exists in I.We define, in the usual way, a prime number of I to 
be a number without proper factors. Then all the primes of N are primes in I. 
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We also have primes such as 0 - (1 $1) consisting of the product of the prime 
(1+1) in N and the unit 0 -1. But  other primes such as 1- (1+1) exist in I, 
not the product of a unit and a prime of N. In addition, there is a special sub- 
class of the primes of I with the property that  no prime in this subclass can be 
written as a product of two numbers of shorter length. For want of a better 
name, we will call these special primes. The number (0 -(1+1)) is a prime but 
i t  is not a special prime since 0 - (1+1) = (1+1) .(0 -1). However, (1 +1) is a 
special prime and, more generally, all the primes of N are special primes in I. 
Examples of other special primes are (1 -2), (1 -3), (1 -4), . . . . 

We now state some theorems, giving only brief outlines of the proofs, which 
are basic in the further development of the number theory of I. 

THEOREM11. Let a be an  element of I represented by a numerical expression i n  
normal form so that a has one of the forms m+n, m-n, -m+n where m, n are 
numerical expressions. Then any proper left-factor of a is a left-factor of nz and n. 

Proof. This corresponds to  Theorem 6 for N. The proof proceeds by ordinary 
induction on the length of a, coupled with the fact that  the representation of a 
number as a numerical expression in normal form is unique. 

THEOREM12. If the prime p i s  a left-factor of the product ab, where a # 1, b #O, 
then p i s  a left-factor of a. 

Proof. By induction on the length of b, and by the previous theorem. 

THEOREM13. If a number a can be written as  a product of primes in  two ways, 
say, a=P l l1  . . .pleland a = q ~ l l  . . . qltl, then Is1 = I tl and plil, plil are associates 
( / i / = / l l ,- . - ,I s / ) .  

Proof. By Lemma 1, Theorem 12, and the left-cancellation law for I. 

We conclude our discussion of I by introducing the concept of congruence in 
it. In ordinary arithmetic, a homomorphic image of the ring of integers is ob- 
tained by adding the relation I ml = 10I to  the ring. Then two integers are con- 
gruent mod Iml if they map onto the same element under this homomorphism. 
I t  is shown in [6] that  if m(=u( l ) )  is an element of I ,  then adding the relation 
u(1) = 0  to I determines a left neoring which is a homomorphic image of I.We 
define two numbers in I to be congruent mod m if they map onto the same ele- 
ment under this homomorphism. Alternatively, we can define two numbers in 
1 t o  be congruent mod m if their difference lies in the fully invariant normal sub- 
loop, generated by nz, of the additive loop of I. The relation between these two 
points of view is discussed briefly in [6] and can be studied in detail using the 
techniques of [4], [s]. The homomorphic images of I described above are the 
nonassociative analogues of finite arithmetics. 

With the above definition of congruence in I, some of the elementary prop- 
erties of congruence in ordinary arithmetic carry over without difficulty (see, 
e.g., Chapter 1 in [8]).The author does not know whether the same is true of 
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some of the deeper theorems involving congruence. 

4. Further developments. The ideas introduced in this paper can be de- 
veloped in several directions. There are many problems for the arithmetic N, 
e.g., obtaining an analogue of the prime number theorem. This seems quite 
feasible since estimates of the number of nonassociative natural numbers of 
given length are available. 

In some of our proofs of properties of N we used properties of ordinary 
arithmetic including induction. Can this be avoided completely and all proper- 
ties of N obtained from the postulates for N given in Section 3? One way to do 
this is to develop ordinary arithmetic within N. Define nonassociative powers 
of numbers in N by a1 =a ,  urn+" =am.an where m, nE N. An equivalence relation, 
=, between numbers in N can be defined by m En if a* =a* for all a EN. We 
now show that the set of these equivalence classes satisfies Peano's postulates 
for the ordinary natural numbers. This is a consequence of the Peano-like postu- 
lates which N satisfies. The length of a number n in N is defined as the equiva- 
lence class containing n. In this way all of ordinary arithmetic and in particular 
those parts which we have used in discussing N can be developed inside N. I t  
follows that if we set up N as a formal system, there will be a Gijdel incomplete- 
ness theorem for the system. We leave to the interested reader the detailed carry- 
ing out of the above ideas. A related topic which may be interesting is the 
theory of recursive functions of nonassociative natural numbers. 

There are many concepts involving congruence in ordinary arithmetic which 
should have interesting analogues in the arithmetic I. In particular we can ask 
such questions as the following. For what congruences does the quotient arith- 
metic (i) satisfy the cancellation law, (ii) allow division, (iii) allow unique divi- 
sion, (iv) satisfy the commutative laws of addition and multiplication? Other 
problems are (i) what is the structure of the multiplicative semigroup of I, 
(ii) can I be embedded in a system with division? 

If we add to N the identical relation (a+b) +(c+d) = (a+c) +(b+d) we get 
an arithmetic S with many interesting properties. In  this system, which is the 
free symmetric groupoid generated by 1 (see [7]), we define multiplication as 
usual by u(1) .v(l) =v(u(l)). Then multiplication is commutative and so both 
distributive laws hold. This arithmetic is extremely close to ordinary arith- 
metic, differing only in the replacing of the associative and commutative laws 
by the single law (a+b) +(c+d) = (a+c) +(b+d). A study of the number theory 
of S should lead to some interesting problems. Another problem which presents 
itself is the obtaining of a set of Peano-like postulates which characterize S. 
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MAINTAINING COMMUNICATION* 

E. J. McSHANE, University of Virginia 

Some twenty years ago a professor of philosophy spoke to the mathematics 
club a t  the University of Virginia. The speech was followed by a warm discus- 
sion of the paradoxes of Zeno. Some regarded the mathematical explanation of 
the paradoxes as completely adequate, others disagreed, and needless to say, 
each disputant emerged triumphantly bearing the opinion he had carried in. But 
one remark of a professor of physics has stayed with me ever since. He said that 
he could easily conceive that someone could arrive in his own mind a t  a perfect 
solution of the paradoxes and still be unable to convey the explanation to any- 
one else. 

Let us a t  least temporarily suspend disbelief in this philosopher with the in- 
communicable thoughts, and not boggle over reasons for acceding to him a belief 
that we deny to Fermat and his celebrated proof that was too long for the 
book's margin. There remains the fact that to the body of philosophy he re- 
mains exactly as useless as though he had never existed. Perhaps he has derived 
intense personal satisfaction from his brilliant reasoning, but the rest of the 
world may as well ignore him. 

In recent years I have been troubled by a suspicion that this image of the 
uncommunicative philosopher may be a parable of an approaching state of 
mathematics. Fortunately, rather than a parable it is an overdrawn caricature, 
but as in all caricatures some features are recognizable. For in mathematics, as 
in the sciences, the communication of ideas becomes steadily more difficult. This 
is a matter that concerns all of us, and each of us should try to help in keeping 
the lines of communication open. 

To begin with, there are the mechanical and financial difficulties involved 

* Retiring Presidential Address, delivered a t  the Fortieth Annual Meeting, December 29, 
1956, Rochester, N. Y. 


