PREFACE

This book is about the solution to and properties of the Coupled Exponent equation $\left(y=x^{\wedge} x\right)$. The solution to this equation is called the "Coupled Root function". This work details our research efforts since 1975. Included are computers/calculators used, evolution of ideas, history of our efforts and still outstanding problems. We have organized the work into different topics such as "Applications", "Solving logarithmic Equations", "Integration", etc. to make it easier for the reader to find a topic. This is a work where the appendices and tables are (in some ways) more important then the text itself. The text is to explain the theory; the tables have the actual items of interest.

Our goal in writing this book is to show the (in our opinion) interesting things we found and to encourage research into this topic as we feel this is one area that has been mostly overlooked. We feel that the Coupled Root function has many hidden properties that have the potential to be useful. Two such applications have been found so far: Ballistics (internal \& external) and automobile acceleration. There is no doubt other areas where the Coupled Root could be used.

What got us interested in the Coupled Exponent as to want to research it more? In 1974, we were in junior high school (7-9 grade) and calculators have just dropped in price just enough to make them within reach of us to buy. After spending our entire lives doing arithmetic "by hand", we were delighted to have a machine that would perform arithmetic correctly out to 8 decima 1 places. We had learned to use slide rules, but they were accurate to 3 digits and they did not present their answers in large bright red or green LED displays. We learned that computers (in those days they were large metal boxes with tape drives and blinking lights and were *very* expensive off limits to all non-experts!) used powers of 2 (binary numbers). From this we would calculate the powers of 2 on the calculator by entering 2 and then pressing the "multiply" key followed by "=" key. Repeated pressing of "=" would give the sequence:

$$
2,4,8,16,32,64,128,256,512,1024,2048,4096, \ldots
$$

It was fun to see how far this would go before the calculator "overflowed" i.e. locked-up until the CLEAR key was pressed to reset the machine. We knew that in our sequence, each element was twice the size of the one before it. We learned also of the factorial sequence,

$$
1,2,6,24,120,720,5040,40320,362880, \ldots
$$

and found this grew faster than the binary sequence.
The American mathematician Philip J. Davis wrote a book for non-math experts called "The Lore of Large Numbers". In this work, Professor Davis discusses sequences like the sequence of squares and cubes and the factorial. In the appendix of his book was a chart comparing different sequences. Like most readers, we wanted to know what the fasting growing sequence was and cared little about the others. The fastest sequence was labelled "The Coupled Exponentials" and the sequence given was,

$$
1,4,27,256,3125,46656,823543,16777216,387420489,1.0 \mathrm{E}+10
$$

It was very impressive to see how quickly the numbers grew. We saw something new that had a distinct "pull" to it.

We know how to invert squares (computing square roots) and invert binary sequences (by computing $\log 2(x))$ but we didn't know how to invert the Coupled Exponentials. We could solve,

$$
x^{\wedge} 2=10 \quad x=3.16227766
$$

$$
\begin{array}{ll}
x^{\wedge} 3=10 & x=2.15443469 \\
2^{\wedge} x=10 & x=3.321928095
\end{array}
$$

but we could not solve

$$
x^{\wedge} x=10 \quad x=? \quad(\text { we know it was between } 2 \text { and } 3)
$$

We asked our math teachers about this and they were unable to solve this and told us there was no quick \& easy solution. From this, we entered the world of mathematical research.

Over the years, our efforts were directed along numeric lines. We wanted a way to compute Coupled Roots as quickly and as painless a way as possible. Calculators have advanced to the point where it was possible for one of us to obtain a programmable calculator with LCD display (no more dead batteries every two hours) and constant memory. When the machine was turned off, it stil1 "remembered" the program and data that had been entered into it. Most scientific calculators have a dynamic range of $10^{\wedge} 100$. That is, the biggest number that can be entered is 9.999999*10^99. From this, the biggest number we could compute the coupled root of was 10^100. This value is $=56.96124843$ We wanted to know things like the coupled root of $10^{\wedge} 1000$. By summer 1980, we found that coupled roots had "quasi-logarithmic" properties. By this we mean that coupled roots "acted" like logarithms when the argument to the coupled root was large. Earlier that summer, one of us computed the integral of coupled root of e^x in closed form. Efforts to compute either a coupled exponent or coupled root integral in terms of elementary functions resulted in failure.

In 1981, the term "Wexzal" was defined to mean "Coupled Root of $10^{\wedge} \times$ ". With this new notation, the manipulation of coupled roots of large numbers was made easier. By end of February 1981, the asymptotic property of the Wexzal was discovered and proved. This explained the earlier "quasi logarithmic" behavior that was observed.

Thru the 1980's the Wexzal was researched in great detail. New integrals that could be written in closed form (involving the Wexzal) were found. An asymptotic expression for inverting factorials was also found. New properties (mostly involving asymptotics) were found. Logarithmic equations were solved in terms of the Wexzal. Super fast means of computing Wexzals on programmable calculators was developed. Methods were developed for approximating Wexzals on 4 -function calculators as these machines (sometimes known as "4-bangers") were cheap and quickly obtainable. Numerical methods were developed for computing least squares that involved the Wexzal.

Because of the rapid growth of coupled exponentials, it became clear that accuracy/precision was of upmost importance. This lead us to define very high computing standards for calculators and computers. The reason for the focus on calculators during the time when early home computers were making their appearence is that the early home computers used the BASIC language which supported only 6-7 digits of precision and was found to not be too useful for Wexzal work despite having greater speed and memory than any calculator that we had.

By 1990 we had amassed a collection of over 200 results (integrals, asymptotics, closed form solution to equations, etc) involving coupled roots and Wexzals. We found that we had not looked (too hard) into applying this work.

That changed quickly when a friend of one of the authors asked him to "come-up with a formula that relates barrel length of a gun to the muzzle velocity for a given bullet \& powder charge". This question along with a related one involving velocity decay for high speed projectiles helped to redirect our research efforts from questions of theoretic interest to those of more practical nature. It was expected that both of these questions could be quickly solved using classical methods involving exponential/logarithmic equations but these were found wanting for the degree of precision desired.

It was discovered in 1993 that for high speed projectiles having speeds
of over $1370 \mathrm{ft} / \mathrm{sec}$, the velocity decay ($\mathrm{v}=\mathrm{f}(\mathrm{x})$ where v is velocity and x is distance) can be described with high accuracy with an equation involving the Wexzal function. This formula agrees with values found in standard ballistic tables (Ingall's [USA] and Krupp's tables [Germany]). The discovery that nature can be modeled with non-classical equations is, to us, amazing and leads one to wonder if more events in nature can be better described with non-classical equations. Today, with the advent of super fast sma11 computers, we expect a11 areas of physics and computational mathematics to undergo a re-evaluation as the types of methods and equations used for research. Nature is not as simple as we think.

Are we the first to research Coupled Roots and related functions? No. Giants of mathematics such as Euler, Eisenstein, Lambert, Hardy and others have touched on Coupled Roots and Coupled Exponents. Today, our "competition" would be Professors Corless, Gonnet, Hare and Jeffrey of University of Waterloo (Canada) who have written the paper "On Lambert's W Function". Johann Heinrich Lambert [1728-1777] was a German mathematician who research many areas of mathematics. Today, he would be known as an applied mathematician. Part of his research involved solving the equation $x=y * \exp (y)$ which the Professors, cited before, chose to name the "W" function. They chose the name W because it looks like the lowercase Greek Omega.

Their 30 page paper is more theoretic than our work here. Their aim was to present the W function in a crisp, concise manner. Because they used an equation involving 'e' as a base instead of 10 , one will find that their equations and derivations are "cleaner" than ours. We feel that our "convention" is better suited for applications even at the expense of more complex formulae.

Since the early 1990's there has been much written in both the technical and lay press about the INTERNET, the electronic network that connects computers of all types all over the world. At one time, it was the exclusive domain of scientists, mathematicians and other researchers. Today it is also accessed by the interested lay public. This aids in the free flow of all types of information planet-wide.

We chose to "publish" this work on the INTERNET as we feel that the INTERNET is the way information will be desiminated in the 21st century. This agrees with our goal of encouraging Coupled Root research.

The style of writing found on the INTERNET (based on postings we have seen in SCI.MATH, SCI.PHYSICS, etc.) is informative, entertaining and very informal. Our aim is to have our work be along the same lines. This is not a traditional mathematics textbook but rather an informal reporting of our results. We assume that the reader is knowledgable about Numerical Analysis, Integral \& Differential Calculus and Numerical Computing in a scientific computer language such as FORTRAN, BASIC or Ada. For other items (such as guns and gunpowder in our Internal Ballistics chapter) we explain the basics of that topic so the reader can better understand the technical issues involved without having to become an expert. We also chose to present our work in ASCII as to maximize accessibility. This restriction also posed a challenge: There are no diagrams or graphs. The reader is told how to construct these.

All brand names of items noted (computers, cars, guns, etc.) are trademarks of their owners. Names noted do not constitute an endorsement on our part; they are noted to aid others who wish to research further the performance of that device. We are not responsible for others who wish to perform experiments to prove/disprove the validity of our models. We present these results (from a legal standpoint) for "entertainment use on7y".

For measurements, we have chosen to use the standard U.S. units of measurements. The reason for this is that the experiments/research was conducted in this system. In the U.S. system, confusion sometimes occur between mass and weight. For this work, mass is measured in Slugs and weight (force) is in Pounds. Distance is in Feet and time is in Seconds. Conventional units are given as part of the discussion to aid the reader.

For each chapter, equations are numbered by chapter and actual number.
E.g. (04.12) means equation \#12 in Chapter 4. References are noted the same way except brackets are used e.g. [05.02]. References range from common texts to papers found at University Goettingen to private communications to us. Another notation used is for referencing end-of-chapter notes. It is denoted by curly brackets e.g. \{11.01\}. These notes appear at the end of each chapter and they contain additional information (mostly historical/non-mathematical comments) about the topic to aid understanding. It was set-up this way as to not interupt the flow of the main concept being presented. The interested reader can read the notes later if desired.

We hope the reader finds this work informative and (at the least) entertaining. Please direct all comments and questions to:

Jay A. Fantini
Gilbert C. Kloepfer
BELIEVE@NETWORKONE.NET
If this work has interested one researcher into researching the questions and topics presented here, then we have met our goal.

The Authors

Chapter 01

The Coupled Exponent

INTRODUCTION

"How quickly does it get large?" This question is asked of number sequences and functions. The sequence (or function) can represent something in nature that increases in size and/or amount or it can be of theoretic value only. The most basic sequence is the linear sequence,

1, 2, 3, 4, ...

where the next term (number) is one more than the one before it. Linear growth is noted by a constant difference between a given term and the term before it.

Another sequence is the sequence of squares (numbers multipled by themselves). This denotes the increase in area as the side is increased. The squares are given by,

$$
\begin{equation*}
1,4,9,16,25,36,49,64,81,100, \ldots \tag{01.02}
\end{equation*}
$$

The sequence of cubes (used to denote an increase in volume) is given by,
$1,8,27,64,125,216,343,512,729,1000, \ldots$
The question arises: how does one compute the "inverse" of such a sequence? I.e. How does one find the value of a number when squared gives a given number? E.g.

$$
x^{2}=10, x=3.162277660 \ldots
$$

This action is called computing the square root $\{01.01\}$. The sequences as given in (01.02) and (01.03) are called "power" sequences because the next term is raised to a constant power. The inverse of raising to a power is to compute a root. The root is also noted by the reciprocal of the power. E.g. Cube root of X is noted by $X^{\wedge}(1 / 3)$ where "^" means to "raise to the power of".

Are the power sequences the fastest growing sequence known? No. If we instead of having the exponent be constant and the base vary, we interchange them, we obtain the exponential sequence. The best known exponential sequence is the binary sequence,

$$
\begin{equation*}
2,4,8,16,32,64,128,256,512,1024, \ldots \tag{01.05}
\end{equation*}
$$

This is formed by $j=2^{\wedge} i$ for $i=1,2,3, \ldots$

Each term is twice the size of the one before it. This sequence is used in digital computing. Digital computers use a base 2 number system as this represents the on/off nature of electronic circuits \{01.02\}. The binary sequence is the source of a popular mathematical story about unexpected rate of growth.

The classic story problem of the Indian peasant who, after
inventing the game of chess, was asked by the king what he wanted as a reward for inventing such an enjoyable game. The peasant wanted to be paid one grain of wheat for the first (of 64) square of the chess board, two grains of wheat for the second square, four grains for the third square and so on until all 64 squares of the chess board have been filled. The king soon learned of the effect of doubling in short notice!

The powers of 10 are an exponential sequence also. This is not as "interesting" to write (10, 100, 1000, ...) due to the fact that we use the base 10 number system. However, the inverse of this sequence is of utmost interest.

The act of solving an equation such as

$$
10^{x}=2, x=0.3010299957 \ldots
$$

is how logarithms come about. Logarithms \{01.03\} are used to solve equations such as (01.06). They were at one time used to aid in multiplication due to the property,

$$
\begin{equation*}
\log \left(x^{*} y\right)=\log (x)+\log (y) \tag{01.07}
\end{equation*}
$$

but calculators have, for the most part, done away with this. Logarithms are still used however.

Southern California is known for sun, surf, Hollywood and earthquakes. Earthquakes are measured on the Richter Scale which is a logarithmic scale. Each "click" up the scale (example: 6.0 to 7.0) represents a force that is 10 times stronger. Sometimes after a major earthquake, scientists wil1 "upgrade" or "downgrade" a quake. What they are doing is updating the rating based on more information gathered from other equipment they have in the field. Most of the time, the adjustment is +/- a couple of 10th of an interval (e.g. 7.1 ==> 6.8). How much of a change is this? The Richter difference is 0.3 so we need to compute,

$$
\begin{equation*}
10 \wedge 0.3=1.995262315 \ldots \tag{01.08}
\end{equation*}
$$

There are two ways to do this: (1) Using a calculator, enter 0.3 then hit the "10^x" key or (2) Try the following approximation: Assuming we can compute square roots, we can use the following facts:

$$
\begin{equation*}
\operatorname{SQRT}(x)=x^{\wedge} 0.5, \operatorname{SQRT}[\operatorname{SQRT}(x)]=x^{\wedge} 0.25, \tag{01.09}
\end{equation*}
$$

where each iteration of the square root hints at a binary sequence. We then try to convert 0.3 into binary (find a computer scientist!). We get,

$$
\begin{equation*}
0.3=0.0100110011 \ldots=1 / 4+1 / 32+1 / 64+\ldots \tag{01.10}
\end{equation*}
$$

248136125
624251 Decimal value read from top to bottom
862
So we get: $10^{\wedge}(1 / 4) * 10^{\wedge}(1 / 32) * 10^{\wedge}(1 / 64) \ldots=1.995 \sim 2.0$
The quake was half as strong as originally thought.
One property logarithms have that is very important is that when given a logarithm to a base (such as 10) and one wishes to have a logarithm to a different base (such as 2) all one need do is divide by a constant. The three most "popular" bases used are: 10, 2, and 'e'. These are known as "common", "binary" and "natural" logarithms. Base 'e' is used mostly by pure mathematicians as formulae involving logarithms to this base come out
"cleaner" (no conversion factors) then with the other bases. The value of e is,

```
inf
\
    > -- = + - + + + + ... = 2.718281828...
    / k! 1 1 2 6
    k=0
```

To convert between common and natural logarithms, one uses the conversion factor,

$$
\begin{equation*}
m=\log (e)=0.4342944819 \ldots \tag{01.12}
\end{equation*}
$$

Most logarithm tables are computed to the base 10. This is because of our numbering system. The logarithm of a number has two parts: the "Characteristic" and the "Mantissa". The characteristic is the part to the left of the decimal point and the mantissa is to the right of the decimal point. Logarithmic tables are tables of mantissas only. The characteristic can be determined from inspection of the original number. This is done by first writing the number in scientific notation.

$$
\begin{equation*}
2000 \Rightarrow 2.0 * 10 \wedge 3=2.0 \mathrm{E}+03 \tag{01.13}
\end{equation*}
$$

The characteristic is the power of 10. In our case, it is 3 . We then lookup the logarithm of 2.0 in the table to obtain 0.30103 . We then add the characteristic to the mantissa to obtain the final result of 3.30103 For numbers less then 1.0 (but greater than 0.0) the charactistic is a negative number. For $\log (0.002)$ we would have,

$$
\begin{equation*}
\log (0.002)=0.30103-3=-2.69897 \tag{01.14}
\end{equation*}
$$

It is customary to write this as,

$$
\begin{equation*}
\log (0.002)=7.30103-10 \quad(7-10=-3) \tag{01.15}
\end{equation*}
$$

so we can find the mantissa in the table as the table contains only positive values. Once we have the logarithm to the base 10 we can convert to another base by computing,

$$
\log _{(x)}=\begin{align*}
& \log (x) \\
& --\log (b) \tag{01.16}
\end{align*}
$$

Most of the time, natural logarithms are noted by $1 n(x)$ and binary logarithms by $\lg (x)$. The notation $" \log (x)$ " is used to mean common logarithms and in theoretic work (and calculus texts) natural logarithms. For this work, $\log (x)$ means common logarithms.

Another example of a sequence is the factorial, that is, the product of $1,2,3, \ldots n$ when given n. The factorial is used greatly in statistics to compute the number of different outcomes. The most basic example is the number of different ways to arrange N objects in a line. The answer is N factorial (written $N!$). Whereas the exponential sequence has the base fixed, the factorial does not have that restriction so for a given base, the factorial will (if given a big enough number) outgrow the exponential sequence (Fig. 01.01).
\qquad

1	2	1
2	4	2
3	8	6
4	16	24
5	32	120
6	64	720
7	128	5040
8	256	40320
9	512	362880
10	1024	3628800
100	$1.26765 \mathrm{E}+30$	$9.3248 \mathrm{E}+157$
1000	$1.07151 \mathrm{E}+301$	4.0235E+2567

(Fig. 01.01)
At some point, the factorial "overtook" the binary exponential. The factorial is said to be a faster increasing sequence than the binary exponential. Is there a sequence that increases faster than the factorial and if so, what are some of its basic properties? There are many ways to construct a sequence that grows faster than the factorials. All one need do is to multiply (for example) the factorial and exponential functions to get a new sequence. We are thinking of something like the exponentials except both the base *and* the exponent vary at the same rate. This act leads to something new.

THE COUPLED EXPONENT

The exponential function in the form of

$$
\begin{equation*}
y=a^{\wedge} x \quad \text { for } a>1 \text { and } a 11 x \tag{01.17}
\end{equation*}
$$

is used extensively in applied and pure mathematics. The most common form of (01.17) is for the base to equal e (base of natural logarithms).
In applied (computational) mathematics, the form most used is,

$$
\begin{equation*}
y=10^{\wedge} x \text { for all } x \tag{01.18}
\end{equation*}
$$

This is sometimes referred to as the "anti-logarithm" function.
The power function is defined to be,

$$
\begin{equation*}
y=x^{\wedge} a \quad \text { for all } x, a \tag{01.19}
\end{equation*}
$$

The most common occurances of the power function is the square ($x^{\wedge} 2$) and the cube ($x^{\wedge} 3$).

The most important thing to note about (01.18) and (01.19) is either the base (for the former) or the exponent (for the latter) is a constant. If we were to vary both the base and the exponent, we would have the "Coupled Exponent" function [01.01],

$$
\begin{equation*}
y=x^{\wedge} x=\operatorname{cxt}(x) \tag{01.20}
\end{equation*}
$$

Other names for (01.20) are "Self-exponential" and "Second-order Towering exponent". In this work, we will used the term "coupled exponent".

The authors are unaware of any occurances of coupled exponents in nature; that is, there is no plant or animal that grows or multiplies in a coupled exponential fashion. The most common place to find (01.20) is in calculus textbooks where students are asked to calculate dy/dx via logarithmic differentiation. Advanced papers and tracts such as G. H.

Hardy's "Orders of Infinity" [01.02] and Paul Du Bois-Reymond's "Ueber asymptotischen Werte, infinitaere Approximationen und infinitaere Aufloesungen von Gleichungen" [01.03] use the coupled exponent for proving theorems involving asymptotic expensions but they do not address any of its special properties. These men took advantage of the super-fast increasing nature of the coupled exponent. Mr. Hardy in his "Orders of Infinity" introduces the notion of the "Tripled Exponent", that is,

$$
\begin{equation*}
y=x^{\wedge} x^{\wedge} x=x^{\wedge} \operatorname{cxt}(x) \tag{01.21}
\end{equation*}
$$

and this is used to demonstrate convergence/divergence of series and for comparing one increasing function against another when their independent argument goes to infinity. We have the ordering,

$$
\begin{equation*}
x^{\wedge} x^{\wedge} x>x^{\wedge} x>x!>e^{\wedge} x>x^{\wedge} 2>x \quad \text { when } x-->\text { inf } \tag{01.22}
\end{equation*}
$$

The following demonstrates the speed of $x^{\wedge} x$ and $x^{\wedge} x^{\wedge} x$

x	$\chi^{\wedge} \times$	$x^{\wedge} x^{\wedge} x$
1	1	1
2	4	16
3	27	7625597484987
4	256	$1.340780792994 \mathrm{E}+154$
5	3125	$1.911012597945 \mathrm{E}+2184$
6	46656	$2.659119772153 \mathrm{E}+36305$
7	823543	$3.759823526784 \mathrm{E}+695974$
8	16777216	$6.014520753651 \mathrm{E}+15151335$
\| 9	387420489	$4.281247731757 \mathrm{E}+369693099$
\| 10	1. $0 \mathrm{E}+10$	$1.000000000000 \mathrm{E}+10000000000$

(Fig. 01.02)
Coupled and Tripled exponents are special cases of what the American mathematician R.A. Knoebel calls "Hyperpowers". A hyperpower tells the number of times a number is exponentially iterated. Using the symbol "\" to denote the hyperpower operator, we have,

```
x^1 = x\1
x^x = x\2
x^\mp@subsup{x}{}{\wedge}x=x\3
```

To the best knowledge of the authors, no comprehensive theory has yet been developed; that is, hyperpowers have not been generalized to the point where one can compute $z=x \backslash y$ where x, y, z are complex numbers. We point this out to show that coupled and tripled exponents are part of something bigger.

BASIC PROPERTIES OF THE COUPLED EXPONENT

Equation (01.20) has some interesting properties. The first and second derivatives are,

$$
\begin{align*}
& d y \\
& --=x^{\wedge} x *[1+\ln (x)] \tag{01.23}\\
& d x \\
& 2 \\
& d y \\
& ---x^{\wedge} x *\left\{[1+\ln (x)]^{\wedge} 2+\begin{array}{c}
1 \\
2
\end{array}\right\}
\end{align*}
$$

dx

The minimum of (01.20) is when (01.23) is equal to zero. This occurs at $x=1 / e=0.3678794412$

The limit at zero is,

$$
\begin{equation*}
\lim _{x \rightarrow 0+} x^{\wedge} x=1 \tag{01.25}
\end{equation*}
$$

For arguments less than zero, the coupled exponent function is complex except when x is a negative integer. The value is then,

$$
x^{\wedge} x=\begin{align*}
& (-1)^{\wedge} x \\
& ------- \tag{01.26}\\
& \operatorname{cxt}(|x|)
\end{align*} \text { for } x=-1,-2,-3, \ldots
$$

When x is a non-integer and less than zero we obtain the result [01.04],

$$
\left|x^{\wedge} x\right|=\begin{gather*}
1 \\
---\cdots---1 \tag{01.27}\\
\operatorname{cxt}(|x|)
\end{gather*} \text { for a11 } x<0
$$

For all x, y in R we have,

$$
\begin{align*}
& \operatorname{cxt}\left(x^{\star} y\right)=\left[y^{\wedge}(x-1)^{\star} \operatorname{cxt}(x)\right]^{\wedge} y^{\star} \operatorname{cxt}(y) \tag{01.28}\\
& \operatorname{cxt}\left(x^{\wedge} y\right)=\operatorname{cxt}(x)^{\wedge}\left[y^{\star} x^{\wedge}(y-1)\right] \tag{01.29}
\end{align*}
$$

For $f(x)=10^{\wedge} x$, we have the ratio,

$$
\begin{align*}
& f(x+1) \\
& -----=10 \tag{01.30}
\end{align*}
$$

$f(x)$
but for coupled exponents we get the following asymptotic expansion:

This means that $c x t(x+1) / x^{\wedge} x$ can be approximated with the line

$$
\begin{equation*}
y=2.7183 * x+1.35914 \tag{01.32}
\end{equation*}
$$

One can expand the coupled exponent in a Taylor series around the point $x=1$,

$$
\begin{equation*}
\operatorname{cxt}(1+x)=1+x+x^{\wedge} 2+\frac{x^{\wedge} 3}{---}+\frac{x^{\wedge} 4}{2} \frac{--}{3}+\ldots \tag{01.33}
\end{equation*}
$$

This would be useful for series inversion near $x=1$.
The question is often asked: Can the integral of the coupled exponent be written in closed form? In terms of elementary functions, the answer is "no", but defining this integral to be a new higher function will prove useful in a later chapter.

The coupled exponent is an interesting higher function because both the base and exponent vary with respect to x, resulting in very rapid growth. There is much research that could be done on this function. Questions include: Could the coupled exponent serve as a basis for a new
type of series? Could a new type of geometry based on R^R be developed? The problem of inverting the coupled exponent has lead to some interesting results. That is the focus of the rest of this book.
01.01:

One learns in school different methods of computing square roots. Methods date to before Christ. It was square roots that lead the Greeks to discover irrational numbers. Irrational numbers are those numbers that cannot be represented by a ratio of two integers. An example would be

```
SQRT(2) = 1.414213562 ...
```

The act of computing square roots is far more difficult than to compute the square. Most of the time, inverting a function is more difficult than the original function.
01.02:

One of the earliest computers, Konrad Zuse's Z1, was made from telephone relays. Konrad Zuse was Germany's leading computer scientist during WWII. He "invented" the computer because as a student of civil engineering, he was (according to an interview for PBS TV in the U.S.A.) "too lazy to perform the required calculations for bridge engineering". The Z1 made a great deal of noise due to the mechanical relays used. For programming, he used discarded film as punch tape to enter instructions into the machine. An assistant recommended that he use vacuum tubes instead of relays to speed the machine up 1000 fold. The $Z 1$ could do a multiplication in 5 seconds. Had a vacuum tube equipped machine been built, its speed would be on a par with a modern programmable calculator.

The Americans built the ENIAC in 1946 which is acknowledged as the first electronic digital computer. This machine used vacuum tubes and was programmed by altering the wiring on the plugboard. It's main use was for computing ballistic tables for the U.S. Army and Navy.

Since the 1960's with the "new math" (an attempt by education "experts" to update mathematics education in the U.S.A.), students have been taught the basics of computer theory. The most basic is the binary number system which has two elements $(0,1)$ where 0 is used to mean "off" and 1 "on". Computers represent all information as binary digits (known as "bits"). Sometimes computer scientists write binary numbers in base 8 or base 16 ("Octal" and "Hexadecimal"). This just amounts to grouping the bits into groups of 3 (for octal) or 4 (for Hexadecimal). The machines themselves work with bits in groups of 8 or 32. The grouping of 8 is called a "Byte" and is used to represent characters and numbers. The memory size of a machine is given (most of the time) in bytes. 1024 bytes (2^10) is called a Kilobyte and is noted by K such as 4096K. A Megabyte is $2^{\wedge} 20=1048576$ bytes and a gigabyte is 2^30 $=1073741824$ bytes.
The group of 32 is called a "word" and is used for storing floating point numbers in the machine. On supercomputers like the Cray, a word is 64 bits long. Memory is measured in words instead of bytes. This is due to supercomputers being used mostly for calculation involving large amounts of numbers. Thus the memory size reported in words tells the user the number of floating point numbers that can be stored in the machine. Many problems in physics and engineering involve manipulating millions of numbers at one time.

The German mathematician Gottfried Von Leibnitz (~1670) thought binary numbers were the "natural" God-given number system because of its elegance. He also thought that someday court cases would be solved via calculations involving binary numbers to determine one's guilt or innocence. This would eliminate the need for lawyers, judges, long court cases and the expense they entail. Today, 300+ years later, we still have made no progress in this area.
01.03:

The first logarithm table was computed by John Napier of Scotland in 1604. He devised a method of computing logarithms to the base 'e' (2.718). The original use of his table was to aid in performing multiplication and division. The user would lookup the logarithm of the two numbers he wanted to multiply. He then added the two logarithms together and then looked in the table to see what number had the logarithm that equalled the computed sum.

In 1610, an Englishman, Henry Briggs, computed the first table of logarithms to the base 10 . This was far more practical. Logarithms were used to compute tables of trignometric functions which were used for navigation. In the early 1600 's England was in competition with Spain for land in the new world. In 1588, Spain tried to invade England because England broke from the Catholic Church and the Spanish hoped to get England back into the Catholic fold. At that time Spain had the best navigators in the world. The Spanish invasion failed due to bad weather and tough mobile ships piloted by Englishman who wanted nothing more to do with the Catholic Church (the Protestant Reformation had been ongoing for over 70 years). The logarithm table followed by the development of the slide-rule enabled England to advance past Spain in the field of navigation. By 1680, England was the world leader in science and mathematics.

These developments can be compared to our era of space competition between the U.S.A. and the U.S.S.R. where there was great focus on innovation. In the U.S.A. aerospace companies were awarded large contracts to develop smaller, faster computers, better space suits, etc. to aid the space effort.

Since 1610, many logarithm tables have been computed. Famous mathematicians such as Gauss and Schloemilch have computed high precision tables. Generations of high school students have had to learn linear interpolation ("reading between the lines" to obtain a value not in the table) while using 4 digit logarithm tables. The lucky ones got to use slide-rules.

Today, in our era of 'killer' Casio and 'hopped-up' HP calculators, there is little need for logarithm tables as these machines can compute logarithms to over 10 decimal places with the touch of a key. The basic properties of logarithms are still used however.

References for Chapter \#01

(1) Davis, Philip J. "Lore of Large Numbers" Random House/American Mathematical Assn. 1961
(2) Hardy, G.H. "Orders of Infinity" Cambridge Press, England, 1910
(3) Reymond, Paul Du Bois, "Ueber asymptotischen Werte infinitaere Approximationen und infinitaere Aufloesungen von Gleichungen"
Universitaet Tuebingen, Germany, 1874
(4) Emde, Fritz, "Tafeln Elementarer Funktionen" B.G. Teubner, Leipzig, Germany, 1940 page 161, Fig. 80

Chapter 02

Inversion of the Coupled Exponent

INTRODUCTION

The coupled exponent function is a monotonic increasing, infinitely differentialable continuous function for $x>=1$. Its increase is faster than any exponential with base $a>1$ as x goes to infinity. The question of inversion was first investigated by L. Euler in the late 1700's [02.01]. He was more concerned with towering exponents, that is the sequence,

$$
\begin{equation*}
x, x^{\wedge} x, x^{\wedge}\left(x^{\wedge} x\right), x^{\wedge}\left[x^{\wedge}\left(x^{\wedge} x\right)\right], \ldots \tag{02.01}
\end{equation*}
$$

He discovered that for x in [1/e^e, $\left.e^{\wedge}(1 / e)\right]$ this sequence converged. (02.01) would converge to the solution of $x=y^{\wedge}(1 / y)$. For example: If we let $x=0.5$, which is within the domain [0.06598804, 1.44466786], and calculate the sequence (02.01) we find it converges to a number, whose value is $y=0.6411857445$. To check, we calculate $y^{\wedge}(1 / y)$ and find the result to be 0.50 . This can be generalized as follows:

The "Coupled Root" is defined to be the inverse of $x^{\wedge} x$. That is,

$$
\begin{equation*}
y=x^{\wedge} x=\operatorname{cxt}(x) \tag{02.02}
\end{equation*}
$$

$x=\operatorname{crt}(y)$
For $y>=1$, the coupled root is single valued.
For y in $\left[1 / e^{\wedge}(1 / e), 1\right)$ the coupled root is multi-valued.
For $y<1 / e^{\wedge}(1 / e)$ the coupled root value is complex. (Fig. 02.01)
Euler's sequence is really the solution of the equation, $x=y^{\wedge}(1 / y)$ which can be solved in closed form.

```
x=---------- =---------
1
- = cxt(1/y)
x
            1
y = --------
    crt(1/x)
```

In modern language, Euler's sequence converges to $1 / \operatorname{crt}(1 / x)$.

$x=y^{\wedge}(1 / y)$	$y=1 / \operatorname{crt}(1 / x)$
----	-----------
1.0E-1000	0.00258717431
1.0E-300	0.00715192375
1.0E-200	0.01000000000
1.0E-100	0.01755579499
1.0E-10	0.10000000000
1.0E-6	0.14152685655
1.0E-5	0.15946624592

$1.0 \mathrm{E}-3$	0.21951315163
0.01	0.27798742481
0.1	0.39901297826
0.25	0.50000000000
0.50	0.64118574451
1.00	1.00000000000
1.4	$x 1=1.8866633062, \times 2=4.4102927939$
2.00	$0.82467854614-1.5674321239$ * i
3.00	$0.22975010659-1.2664477436$ * i
10.0	-0.11919307342-0.7505832939 * i
100.0	-0.17012713295-0.4239597520 * i
1000.0	-0.15749964580-0.2978178949 * i

(Fig. 02.01)
Towering exponents have been researched up to the present time. Papers by Woepcke [02.02], Knoebel [02.03] and others focus on the properties of towering exponents. The first author to concern himself with coupled roots is Gotthold Eisenstein. In his paper "Entwicklung von a^a^a^a...", [02.04], Eisenstein compiles the first known coupled root table for $x=1,2,3, \ldots 40,50,60,99,100,101, \ldots 105$ out to 7 significant figures. He comments that "this exercise [in calculating coupled roots] is instructive for the beginner in analytic geometry."

BASIC PROPERTIES OF THE COUPLED ROOT

Because the coupled root is the inverse of $x^{\wedge} x$, we should first compare coupled roots to logarithms. (Fig. 02.02)

```
crt(x) > log(x) for x in [1,1E+10)
crt(x)= log(x) at x = 1E+10
crt(x)<log(x) for x > 1E+10
\begin{tabular}{|c|c|c|}
\hline x & \(\log (\mathrm{x})\) & crt (x) \\
\hline - & ------ & \\
\hline 1 & 0.0 & 1.0 \\
\hline 2 & 0.3010299957 & 1.559610469 \\
\hline 3 & 0.4771212547 & 1.825455023 \\
\hline 4 & 0.6020599913 & 2.0 \\
\hline 5 & 0.6989700043 & 2.129372483 \\
\hline 10 & 1.0 & 2.506184146 \\
\hline 100 & 2.0 & 3.597285024 \\
\hline 1000 & 3.0 & 4.555535705 \\
\hline \(1.0 \mathrm{E}+6\) & 6.0 & 7.065796728 \\
\hline 1. \(0 \mathrm{E}+10\) & 10.0 & 10.0 \\
\hline 1.0E+20 & 20.0 & 16.44640751 \\
\hline 1.0E+100 & 100.0 & 56.96124843 \\
\hline 1.0E+1000 & 1000.0 & 386.5220817 \\
\hline
\end{tabular}

As x-->infinity, the coupled root function goes to infinity at a slower rate than logarithms. That is,
\[
\begin{equation*}
\operatorname{crt}(x) \tag{02.07}
\end{equation*}
\]
lim ------ = 0
\(x\)->inf \(\log (x)\)

To calculate the slope of the coupled root function we use,
```

d 1
-- crt(x) = ---------------
dx x*[1+ln(crt(x))]

```


The Taylor expansion around \(x=1\) is,
\[
\operatorname{crt}(1+x)=1+x-x^{\wedge} 2+\begin{gather*}
3  \tag{02.10}\\
-x^{\wedge} 3 \\
2
\end{gathered} \stackrel{17}{--x^{\wedge} 4} \begin{gathered}
37 \\
6
\end{gather*} \underset{6}{--x^{\wedge} 5}+\ldots
\]

For \(v>0\) and \(x\) in \(R\) we have,
```

cxt[v*crt(x)] crt(x)
------------- = cxt(v)

```
x^v
Can the integral of \(\operatorname{crt}(\mathrm{x})\) we computed in terms of the elementary functions? No, but the integral of \(\operatorname{crt}\left(a^{\wedge} x\right)\) for \(a>0\), can.

\section*{ORDERS OF FUNCTIONS AND THE COUPLED ROOT}

In G.H. Hardy's "Orders of Infinity", Hardy uses an ordering scheme first devised by Du Bois Reymond for "sorting out" fast growing functions. The "Type" of a function is defined to be:
\[
\operatorname{Typ}[f(x)]=\begin{array}{ll}
1 & d f \\
-* & --  \tag{02.11}\\
f & d x
\end{array}
\]

As examples, \(\operatorname{Typ}\left(e^{\wedge} x\right)=1, \operatorname{Typ}\left(x^{\wedge} x\right)=1+\ln (x)\). From this, the fast growing functions can be "tamed". Hardy's system is based around \(e^{\wedge} x\).

If we proposed the same type of system but based on coupled exponents, we would have.
\[
\mathrm{T} 1[f(x)]=\frac{\operatorname{crt}[f(x)]}{x}
\]

An example of this would be \(\operatorname{T1}\left(10^{\wedge} x\right)=\operatorname{crt}\left(10^{\wedge} x\right) / x\).
The difficulty with this is so far, the coupled root cannot be asymptoticaly reduced to a "known" function. In the example cited, one does not yet know what the order of \(\operatorname{crt}\left(10^{\wedge} x\right) / x\) is. We do know that it is less than 1 because 10^x < x^x for x-->infinity. It will be shown later that \(\operatorname{T1}\left(10^{\wedge} x\right) \sim 1 / \log (x)\)

\section*{NUMERIC CALCULATION AND BIG NUMBERS}

\footnotetext{
Coupled roots display "quasi-1ogarithmic" behavior. That is, coupled roots "almost" obey the basic laws of logarithms,
}
\[
\begin{align*}
& \log \left(x^{\star} y\right)=\log (x)+\log (y)  \tag{02.13}\\
& \log \left(x^{\wedge} y\right)=y * \log (x) \tag{02.14}
\end{align*}
\]

More important, as x --> infinity, can the coupled root be written in terms of elementary functions?

Attempts to solve this numerically lead to difficulties. Most small programmable calculators and pocket computers are limited to 10 decimal places and (more important) a dynamic range of \(10^{\wedge} 99\). This means the largest coupled root one can compute is \(\operatorname{crt}(9.999 \mathrm{Eg9})=\operatorname{crt}\left(10^{\wedge} 100\right)\) which is just under 57. As it stands, it would be impossible to calculate say, crt(10^1000000) [value is 189481.3]. Asymptotics, as a branch of mathematics, is where one takes the "long range view". One tries to see what the function's behavior is as x-->infinity.

The big question is: Are coupled roots a new type of logarithm? Is there a duplication formula for the coupled root whereby when given a value for \(x\) and \(\operatorname{crt}(x)\), can one calculate crt(2*x)?

We have raised more questions about coupled roots than answers. Coupled roots are a new type of higher function that has not been studied much by mathematicians. Can coupled roots be used in applications where sometype of "universal logarithmic" function is needed? This is an open area for research.

Note: We have not discussed much about tripled exponents. We can define the inverse of \(y=x^{\wedge}\left(x^{\wedge} x\right)\) to be \(x=\operatorname{trp}(y)\) for all \(x\). Tripled exponents and tripled roots will only be used for comparing fast growing functions. They too are an open topic of research.

\section*{References for Chapter \#02}
(1) Euler, L. "De Formulis Exponentialibus Replicatus" Opera Omnia, Series Primus XV:268-97 (1777)
(2) Woepcke, F. "Note sur l'expression a^a^a... et les fonctions inverses correspondantes" Crelle's Journal fuer die reine und Angewandte Mathematik 42 (1851), pages 83-90 Germany
(3) Knoebel, R.A., "Exponentials Reiterated" American Mathematical Monthly 88 (1981), pages 235-52
(4) Eisenstein, G. "Entwicklung von a^a^a..." Crelle's Journal fuer die reine und Angewandte Mathematik 28 (1844), pages 49-52

\section*{Chapter 03}

\section*{Coupled Roots of Large Numbers}

\section*{INTRODUCTION}

Ask someone to solve \(y=x^{\wedge} x\) for \(x\) and chances are the first thing they will write is,
\[
\begin{equation*}
\log (y)=x * \log (x) \tag{03.01}
\end{equation*}
\]
and then,
\(x=\log (y) / \log (x)\)
After a short time, they will conclude that the problem is unsolvable in closed form because they "cannot get rid of the \(x\) on the right hand side of the equation". They will be correct. The important thing to note is that the first step was taking logarithms of both sides in an attempt to clear the exponent ( \(\wedge\) ) operation. The problem reduces to x times its logarithm. This looks a little less intimidating.

Have the same individual plot on an ( \(x, y\) ) graph the two functions,
\[
\begin{array}{ll}
y=\operatorname{crt}(x) & \text { for } x>=1 \\
& -\operatorname{and}- \\
y=\log (x) & \text { for } x>=1 \tag{03.04}
\end{array}
\]

It will appear that \(\operatorname{crt}(x)>\log (x)\) for all \(x\). This is of course, wrong. A way is needed to "speed-up" the \(x\) value so we can plot for larger values of \(x\).

Make the substitution, \(z=10^{\wedge} \times\) and plot now the functions,
```

$y=\operatorname{crt}\left(10^{\wedge} x\right)$ for $x>=0$

```
\(y=x \quad\) for \(x>=0\)
Instead of two super-slowly increasing functions, one now sees a line at a 45 degree angle and a graceful curve starting at \((0,1)\). Points can be read off the curve: \((0.602,2),(1.43,3),(2.4,4)\). The curve and line intersect at \((10,10)\) thus driving home the fact that,
\[
\begin{equation*}
\operatorname{crt}(x)=\log (x) \quad \text { at } x=1 E+10 \tag{03.07}
\end{equation*}
\]

Each step in the \(x\) direction now represents a decade (stepping thru a power of 10). At \(x=100\), we have \(y=56.96\); at \(x=200, y=100\), etc.

\section*{WORKING WITH LARGE NUMBERS}

The definition of "large number", for this discussion, is a value greater than \(1.0 \mathrm{E}+100\). This is beyond the range of most modern pocket calculators and pocket computers. Because early work with coupled roots was numeric based, and a need for handling large numbers arose, a new function call the "Wexzal" (corruption of the German word "Wurzel",
meaning "root") was defined.

The wexzal is defined to be,
wzl(x) \(=\operatorname{crt}\left(10^{\wedge} x\right)\)
It is a function for \(x>=0\); a double rooted relation
for \(x\) in \([-\log (e) / e, 0)\). For \(x<-\log (e) / e\), the Wexzal is complex valued.
Now we have the means to calculate (on a standard calculator) coupled roots of up to 1.0 * 10^1.0E+99.
Example: wz1(1.0E+99) = \(\operatorname{crt[10\wedge (1.0E+99)]~=~1.030787889E+97~}\)

\section*{BASIC PROPERTIES OF THE WEXZAL FUNCTION}

Some of the basic properties of wexzals include,
wzl(log(x)) \(=\operatorname{crt}(x)\)
\(w z 1(0)=1\)
wzl(x) ^ wzl (x) = 10^x
\(y=w z 1(x), \quad x=y * \log (y)\)
wzl(x) * \(\log [w z 1(x)]=x \quad-->\log [w z 1(x)]=x / w z 1(x)\)
The identity: \(\log [w z 1(x)]=x / w z 1(x)\), is very important in numeric calculation for one main reason: One can compute a logarithm (of a wexzal) by just dividing. Logarithmic calculation on computers and calculators is considered "expensive" in terms of CPU time. An example of this concern with "computer time" is in the field of realtime control. The computer must make calculations quickly enough so it can react to the inputs from the outside world (e.g. sensor on a manufactoring robot) in realtime. Another use for (03.13) is in the calculation of integrals involving the wexzal function.

Other identities include,
\(w z 1\left(x^{\star} 10^{\wedge} x\right)=10^{\wedge} x\)
\(\log \left\{\operatorname{cxt}\left[w z 1(x)^{\wedge} 2\right]\right\}=2 * x * w z 1(x)\)
\(\operatorname{sqr}\left\{\operatorname{cxt}\left[\mathrm{wz} 7(x)^{\wedge} 2\right]\right\}=10^{\wedge}\left[x^{*} w z 7(x)\right]\)
The derivative of the wexzal can be computed as follows,
\(x=y * \log (y)\)
dx
\(--=m+\log (y) \quad\) where \(m=\log (e)[L o g\) converion factor] (03.18)
dy

The second derivative is,
\[
\begin{aligned}
& \text { dy } \\
& \text { x -- } \\
& 1 \text { dx } \\
& \text { d^2y } \quad \mathrm{y} \quad \mathrm{y}^{\wedge} 2 \quad \mathrm{~m} \quad|\mathrm{dy}|
\end{aligned}
\]
\[
\begin{aligned}
& \text { ( }-+m \text { ) } \\
& \text { y }
\end{aligned}
\]

Further calculation of the derivative of \(\mathrm{y}=\mathrm{wz1}(\mathrm{x})\) leads to the taylor series around \(x=0\).

Note that each term is in the form of
cxt(n-1)

Performing the ratio test leads to a radius of convergence of
\(|x|<=m / e=0.1597680113\)
Reciprocating (03.21) leads to the series,

Where each derivative of \(1 / w z 1(x)\) at \(x=0\) is,
\[
A n=(-1)^{\wedge} n * \frac{(n+1)^{(n-1)}}{m^{\wedge} n}
\]

\section*{ASYMPTOTIC PROPERTIES OF THE WEXZAL}

Asymptotics is the study of function behavior as x-->infinity. We say the \(f(x)\) is asymptotic to \(g(x)\) for \(x\)-->infinity when we have,
\[
\lim _{x \rightarrow \inf } \frac{f(x)}{} \frac{---}{g(x)}=1
\]
and it is written as \(f(x) \sim g(x)\). We shal1 use the notation \(f(1 / x) \sim g(1 / x)\) to mean,
\[
\lim _{x->\inf } \frac{f(1 / x)}{} g(1 / x)=1
\]

The wexzal function is asymptotic to an expression involving logarithms. In Hardy's "Orders of Infinity", [03.01] he quotes a technique used by Du Bois Reymond in his "Infinitaercalcuel" for asymptotic solution of equations. We outline it here

Given the equation,
\[
\begin{equation*}
x=y * K(y) \tag{03.28}
\end{equation*}
\]
where \(\mathrm{y}^{\wedge}(-\mathrm{v})<K<\mathrm{y}^{\wedge} n\) where \(v\) is "near" zero. If the increase of growth of \(K\) is slow enough where \(K[y * K(y)]\) is like (in the asmptotic sense) \(K(y)\) then we have,
\[
\begin{equation*}
y=x / K(y) \sim x / K(x) \tag{03.29}
\end{equation*}
\]

From this we can show that the wexzal is asymptotic to \(x / \log (x)\).
\[
\begin{equation*}
\text { THM: wzl }(x) \sim x / \log (x) \tag{03.30}
\end{equation*}
\]

Proof (via repeated use of L'Hospital's Rule):


Because \(w \mathbb{Z}(x)<x\) for all \(x>10\), the term,
\[
\lim _{x->\text { inf }} \frac{m * W Z l(x)}{-------=0} x=0
\]

We now have,

\[
\lim _{x-\inf }\left[m^{*} W z 1(x)+x\right] / x=\lim _{x->\inf }\left[1+\frac{m * W z 1(x)}{}[------]=1\right.
\]

Therefore, (03.30) is true.

Let us see how the numbers compare,
\begin{tabular}{|c|c|c|c|}
\hline x & wzl (x) & \(x / \log (x)\) & ratio \\
\hline - & ------ & & ----- \\
\hline 100 & 56.96124843 & 50.0 & 1.139334969 \\
\hline 1000 & 386.5220817 & 333.333333 & 1.159566245 \\
\hline 1E+06 & 189481.2766 & 166666.667 & 1.136887659 \\
\hline \(1 \mathrm{E}+10\) & 1105747503 & 1000000000 & 1.105747503 \\
\hline \(1 \mathrm{E}+50\) & \(2.069711620 \mathrm{E}+48\) & 2. \(0 \mathrm{E}+48\) & 1.034855810 \\
\hline 1E+99 & \(1.030787889 \mathrm{E}+97\) & \(1.01010101 \mathrm{E}+97\) & 1.020480010 \\
\hline
\end{tabular}
(Fig. 03.01)

Using (03.30) we can generate from eqn (03.19) the following result,
\begin{tabular}{|c|c|c|}
\hline 1 & wzl (x) & 1 \\
\hline X & X & og (x) \\
\hline
\end{tabular}
\(m+-----\)
wzl (x)

This means,
\[
\begin{align*}
& 1 \quad 1 \tag{03.35}
\end{align*}
\]
\[
\begin{aligned}
& \text { m + ------ } \\
& \text { wzl(x) }
\end{aligned}
\]

Using theorems from Du Bois Reymond's "Ueber asymptotische Werthe,
infinitaere Approximationen und infinitaere Aufloesungen von
Gleichungen" [03.02] we present the following results where \(y=w z l(x)\).
\[
w z 1(x+1) \sim w z\rceil(x) * e^{\begin{array}{c}
1 d y \\
--- \\
y d x \tag{03.36}
\end{array}}
\]
\(\log (2)\)
\(---------]\)
\(m+-----\)
wzl (x)
\[
\lim _{x \rightarrow \inf }[\operatorname{wz}](x) \wedge \begin{gather*}
d y \\
--] \\
d x \tag{03.39}
\end{gather*}=10
\]
wz1 \(\left[\left(x^{*} \log (x)\right)^{\wedge} v\right] \sim x^{\wedge} v / v^{*} \log (x)^{\wedge}(v-1)\) such that \(v>0\)
wz1[sqr( \(\left.\left.x^{*} \log (x)\right)\right] \sim \operatorname{sqr}[w z 1(4 * x)] \sim 2 * \operatorname{sqr}[w z 1(x)]\)
\(w z 1\left(x^{\wedge} v^{*} 10^{\wedge} x\right) \sim x^{\wedge}(v-1) * 10^{\wedge} x\) for all \(v\) in reals
wz1 (x)^2 ~ 2*wz1[x*wz1(x)]
More results can be found in the appendix.

\section*{ASYMPTOTIC EXPRESSION FOR TRP(10^x)}

It was shown that an asymptotic expression could be developed for \(\operatorname{crt}\left(10^{\wedge} x\right)\). It is possible to do the same thing for \(\operatorname{trp}\left(10^{\wedge} x\right)\). Because the tripled root function is slower than the coupled root, we would expect a result involving either double logarithms or coupled roots. First let us prove that
\[
\begin{equation*}
e^{*} x^{\wedge}(x+1) \sim \operatorname{cxt}(x+1) \tag{03.43}
\end{equation*}
\]

Rewriting this as,
\[
\begin{equation*}
x^{\wedge}(x+1) \sim c x t(x+1) / e \tag{03.44}
\end{equation*}
\]
and taking natural logarithms of both sides and dividing we get,
```

 (x+1)*[ln}(x+1)-1] \operatorname{ln}(x+1)\quad\operatorname{ln}(x)+1/
 lim --------------- = lim -------- = lim --------- = 1 (03.45)
x->inf (x+1)*\operatorname{ln}(x)\quadx->inf ln(x)+1 x->inf ln(x)+1

```

Therefore \(e^{*} x^{\wedge}(x+1) \sim \operatorname{cxt}(x+1)\). We want to show that,
\[
\operatorname{trp}\left(10^{\wedge} x\right) \sim 1+\operatorname{crt}[-\cdots
\]

Start by computing the inverse of both sides. For the left side we get,
\[
\begin{equation*}
x=y^{\wedge} y^{*} \log (y) \tag{03.47}
\end{equation*}
\]

For the right side we have,
\[
\frac{x}{-----}=e^{*}(y-1)^{(y-1)}
\]

The asymptotic solution of \(y=x / \log (x)\) is
\[
\begin{equation*}
x \sim y * \log (x) \tag{03.49}
\end{equation*}
\]

So we get for the solution to (03.48) is
\[
\begin{equation*}
x \sim e^{*}(y-1)^{(y-1)} *(y-1) * \log (y-1)=e^{*}(y-1)^{y} * \log (y-1) \tag{03.50}
\end{equation*}
\]

From (03.43) we can deduce that
\[
x^{(x+1)} \sim{ }^{(x+} \underset{e}{ } \quad \begin{align*}
& \text { ext }(x+1) \tag{03.51}
\end{align*}
\]

Letting \(A=y-1\) in (03.50) we get,
\[
\begin{equation*}
x \sim e^{*} A^{(A+1)} * \log (A) \sim(A+1)^{(A+1)} * \log (A) \tag{03.52}
\end{equation*}
\]

Which becomes,
\[
\begin{equation*}
x \sim y^{y} * \log (y-1) \tag{03.53}
\end{equation*}
\]

See if we can "dispose" of the ( \(y-1\) ) in the logarithmic term by taking limits.
\[
\begin{aligned}
& y \text {->inf } y^{\wedge} y^{*} \log (y) \quad y \text {->inf } \log (y) \quad y \text {->inf } \log (y)
\end{aligned}
\]

Therefore (03.46) is true.
The two asymptotic developments have defined how quickly the coupled root and tripled root increase as \(x\) increases. They can be written as,
\[
\begin{align*}
& \log (x) \tag{03.55}
\end{align*}
\]
\(\log (x)\)
\(\operatorname{trp}(x) \sim 1+\operatorname{crt}\{-----------\}\)
\[
e^{*} \log [\log (x)]
\]

Asymptotic expressions have been developed for both coupled and tripled root of \(10^{\wedge} \times\). Both these functions will be used for solving equations involving logarithms in asymptotic and closed form.

\section*{References for Chapter \#03}
(1) Hardy, G.H. "Orders of Infinity" Cambridge Press, England, 1910
(2) Reymond, Paul Du Bois, "Ueber asymptotischen Werte infinitaere Approximationen und infinitaere Aufloesungen von Gleichungen", pages 368-369 Universitaet Tuebingen, Germany, 1874

\section*{Chapter 04}

\section*{Solution of Equations via Wexzals}

\section*{INTRODUCTION}

Coupled Roots (and Wexzals) give one the ability to solve various transcendential equations in closed form. By "closed form" we mean the ability to write the equation as a formula without the use of any infinite process such as integration or summation. The definition of closed form is also dependant on what functions are considered "elementary". Most mathematicians consider the trigonometric, logarithmic and hyperbolic functions to be elementry. A humorous definition of "elementary functions" is "what can be found on the face of a scientific calculator". These functions are studied in great detail by students of mathematics \(\{04.01\}\). The so-called "higher functions" such as the Bessel, Gamma and Zeta functions are defined either in terms of a series or an integral. These functions got named and tabulated because they were used to solve important problems in physics and engineering [04.01]. Higher functions have specialized use and (sometimes) very interesting properties [04.02]. For the sake of numeric calculation, one can view these functions like the elementary functions. In this work, the Coupled Root and Wexzal are higher functions. If one accepts these higher functions (uses the notation for them; not write the series or integral representation), then one has expended ones ability to write equations (or their solution) in closed form.

For example, a differential equation might have the Bessel function as a solution. If you accept the Bessel function as a "basic" function then the differential equation's solution would be in closed form. If you do not accept the Bessel function as being "basic", then you would have to write the solution in series form and thus it would not be in closed form. For this book, higher functions such as Bessel, Wexzal, etc. are considered "basic".

Why the obsession with closed form? The main advantage of writing the solution of transcendential equations in closed form is the ability to obtain numerical values to high precision quickly. Closed form results make the equations much easier to manipulate as no tests for series convergence need be made. Some of the equations that can be solved with the Wexzal are \(y=x+\log (x), y=x^{\star} w z 1(x), y=x^{\wedge} 2+10^{\wedge} x\), etc.

\section*{EQUATIONS INVOLVING LOGARITHMS/EXPONENTS}

The classic equation that is studied in calculus is,
\[
\begin{equation*}
y=x^{\wedge}(1 / x) \tag{04.01}
\end{equation*}
\]

The solution is (see chapter 2),

\section*{1}
\[
\begin{equation*}
x=------- \tag{04.02}
\end{equation*}
\]

From this, we can solve,
\[
y=\frac{x}{-----(x)}
\]

This is done by,

> 1 1 \(-=\) \(y\) \(y\) \(l o g(x)\) \(10^{\wedge}(1 / y)=x^{\wedge}(1 / x)\)
\[
\begin{gather*}
1 \\
x=--------- \tag{04.06}
\end{gather*}
\]

From this, we can see that depending on the value of \(y, x\) can take either real or complex values. For \(y<0, x\) is single valued and real. For \(y>=e, x\) has two real values. For \(0<=y<e, x\) is complex.

Another example is,
\[
\begin{align*}
& y=x^{\wedge} 2^{*} \log (x)  \tag{04.07}\\
& 2^{*} y=2^{*} x^{\wedge} 2^{*} \log (x)=x^{\wedge} 2^{*} \log \left(x^{\wedge} 2\right)  \tag{04.08}\\
& x=\operatorname{sqrt}\left[\operatorname{wzl}\left(2^{*} y\right)\right] \tag{04.09}
\end{align*}
\]

Another example, this time with exponents, is,
```

y = x+10^x
Let $z=10^{\wedge} x$ so we get,
$y=\log (z)+z$
$10^{\wedge} y=z^{*} 10^{\wedge} z$
Let $u=10^{\wedge} z$
$10^{\wedge} y=u^{*} \log (u)$
$u=w z l\left(10^{\wedge} y\right)$
(04.14)
$z=\log (u)=\log \left[w z 1\left(10^{\wedge} y\right)\right]$
(04.15)
$\left.x=\log (z)=\log \left\{\log [w z\rceil\left(10^{\wedge} y\right)\right]\right\}$

EQUATIONS INVOLVING WEXZALS

From the preceding section, it is clear that most logarithmic equations can be solved in closed form with Wexzals. If Wexzals are needed to solve logarithmic equations in closed form, then does it follow that something "higher" is required to solve Wexzalic equations in closed form? For most Wexzalic equations, the answer is "no". An example:

Solve,

```
\(y=x^{\star} w z 1(x)\)
    (04.17)
    \(2 * y=2 * x * w z 1(x)\)
    (04.18)
    \(2 * y=2 * w z 1(x)^{\wedge} 2^{*} x / w z 1(x)\)
    \(2 * y=w z\rceil(x)^{\wedge} 2^{*} \log \left[w z 1(x)^{\wedge} 2\right]\)
    (04.20)
    wzl(2*y) \(=w z 1(x)^{\wedge} 2\)
    (04.21)
    \(\operatorname{sqrt}[\) wzl \((2 * y)]=w z l(x)\)
    (04.22)
    \(\operatorname{cxt}\left\{\operatorname{sqrt}\left[\mathrm{wzl}\left(2^{\star} y\right)\right]\right\}=10^{\wedge} x\)
    (04.23)
    \(x=\log (\operatorname{cxt}\{\operatorname{sqrt}[w z l(2 * y)]\})\)
    (04.24)
```

A11 we did was take advantage of the identity property, $\log [w z 1(u)]=u / w z 1(u)$ and try to place the equation in a form of $y=<$ term_of_ $x>*$ log[<term_of_ $x>]$ so we can then solve for x.

A more complex example would be solving $y=x+w z 1(x)$ as the addition would be expected to make the equation more difficult to solve. This is based on our experience with $y=x+10^{\wedge} x$ from before.

Solve,

```
y = x+wzl(x)
\(10 * y=10 *[x+w z 1(x)]\)
(04.26)
\(10 * y=10 *\{w z 1(x) *[\log (w z 1(x))+1]\}\)
(04.27)
\(10 * y=10 *\{w z\rceil(x) *[x / w z\rceil(x)+1]\}\)
(04.28)
\(10 * y=10 * w z 1(x) * \log [10 * w z 1(x)]\)
(04.29)
\(w z 1(10 * y)=10 * w z 1(x)\)
(04.30)
\(w z 1(10 * y) / 10=w z 1(x)\)
(04.31)
cxt[wz1 (10*y)/10] = 10^x
(04.32)
\(x=\log \{c x t[w z 1(10 * y) / 10]\}\)

An interesting "trick" discovered by one of the authors is:
Given,
\[
\begin{equation*}
y=x+f(x) \text { whose solution is } x=g(y) \tag{04.34}
\end{equation*}
\]

The solution of \(y=x+\operatorname{INVf}(x)\) where \(\operatorname{INVf}(x)\) means the inverse of \(f(x)\)
is given by,
\[
\begin{equation*}
x=f[g(y)] \tag{04.35}
\end{equation*}
\]

An example of using this is the following:
```

y = x^x*10^x
$\log (y)=x+x^{*} \log (x)$
Let $f(x)=w z(x)$ and using (04.24) we have
$g(y)=\log \{c x t[w z 1(10 * y) / 10]\}$
$\operatorname{INV} f(x)=x^{*} \log (x)$ so
$\operatorname{INVf}[g(y)]=w z(10 * y) / 10$
So the final answer to (04.20) is,
$x=w z 1[10 * 10 g(y)] / 10$

LIMITATIONS

Is the Wexzal "all-powerful" in solving logarithmic equations? The answer is no. An example of an equation that (so far) has eluded solution is,

$$
\begin{equation*}
y=10^{\wedge} x^{*} \log (x) \tag{04.42}
\end{equation*}
$$

which is the same form as,

$$
\begin{equation*}
y=x+\log [\log (x)] \tag{04.43}
\end{equation*}
$$

Note that (04.43) has a double logarithmic term and a linear term. When there is a linear term and either a logarithmic or exponential term in an equation, we call this a "logarithmic difference of 1". The logarithmic difference is defined to be the number of types a logarithm (or exponential) need be computed to transform the linear term into the logarithmic one. E.g.

```
x+log(x) ==> logarithmic difference of 1
10^}\mp@subsup{|}{}{*}x ==> logarithmic difference of 
    (04.44)
    (04.45)
10^ (**log(x) ==> logarithmic difference of 2
(04.46)
x+7og[log(x)] ==> logarithmic difference of 2

We think the Wexzal is incapable of solving equations with logarithmic differences greater than one. The theory for this needs to be further developed.

\section*{AN EQUATION INVOLVING TRIPLED ROOTS}

In Chapter 03 we discussed the basics of Tripled Roots. One equation whose solution involves tripled roots is the following:
\[
\begin{equation*}
y=x^{\star} 10^{x}+\log (x) \tag{04.48}
\end{equation*}
\]

By taking anti-logarithms of both sides twice, the solution becomes clear,
\[
10^{y}=x^{\star} 10^{x \star 10^{x}}
\]
\(10^{y} \quad\left(10^{\wedge} x\right)^{\left(10^{\wedge} x\right)}\)
\(10=\left(10^{\wedge} x\right)\)

From this we get,
\[
\begin{equation*}
x=\log \left\{\operatorname{trp}\left[10^{\wedge}\left(10^{\wedge} y\right)\right]\right\} \tag{04.51}
\end{equation*}
\]

Which shows that the addition of a simple logarithmic term can force an equation to be unsolvable (in closed form) with Wexzals only. From this, it appears that Tripled Roots is a "higher" order function than Wexzals in terms of solving equations just as Wexzals are "higher" compared to logarithms when it comes to solving equations. The theory relating Wexzals and Tripled Roots needs further development. The only major results relating this theory is,
```

 1
 y= - , y = log(x) meet at x = 2.506184146 = crt(10)
x
x
y=x , y = wzl(x) meet at x=1.923580364 = trp(10)

```

Where the first pair of equations lead to a Coupled Root based constant and the second pair (also "simple" functions) lead to a Tripled Root constant.

\section*{CONCLUSION}

Coupled and Tripled Roots enable one to solve equations in closed form that before were impossible. This gives one a better understanding of the nature of the solution of the equation. The major area of interest is the relationship (if there is any) between Coupled and Tripled Roots in terms of solving equations.
04.01:

Mathematical tables and handbooks have existed since before Henry Briggs published his logarithmic (base 10) tables in 1610. The first effort to compile an extensive handbook containing all of the important higher functions was by Professors Eugene Jahnke \& Fritz Emde in Stuttgart Germany in 1909. In their Forword, Jahnke \& Emde stated that they were printing their book with German text on one side of the page and English
on the other side. This was to make the book accessible to English and American mathematicians as well. This was five years before the start of WWI and Europe was prosperous and peaceful. There was much interchange between German and English mathematicians. The center of English mathematics was Cambridge where G.H. Hardy was located. Goettingen was the center of German mathematics. This small quiet German Universitaetstadt was where the great Karl Friedrich Gauss worked. The Goettingen university was under David Hilbert who in 1900 proposed a set of problems that would take mathematicians 100 years to solve.

In 1933, Jahnke \& Emde saw that their book was a "best seller" and released a second edition. They added some tables and fixed mistakes found in the first edition. In 1938, they released the third edition. Their last edition was in 1941 during WWII. In 1945 the American publisher Dover (known for re-printing scientific classics for low price) released the 1941 edition.

In 1954, during the Cold War, two American professors, Milton Abramowitz and Irene Stegun with support from the National Buro of Standards (now called ANSI) and MIT published "the mother of all handbooks" titled "Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables". This large work was intended to be a larger, more accurate version of Jahnke \& Emde's work. Abramowitz \& Stegun used digital computers (early IBM mainframes) to generate their tables. They included functions most useful for applied science as scientific research (mostly in rockets and nuclear weapons) was going on at full speed due to the Cold War. The first edition, due to the size and scope, was riddled with mistakes. By 1971, there were 10 editions. Dover has reprinted the ninth edition in paperback.

Today (1998) small powerful computers have almost removed the need for handbooks like these. In 1954, computers were expensive and scarce; the average researcher had to use a slide rule and (if lucky) a mechanical calculator that could add, subtract, multiply and divide. Today's researcher can obtain a computer costing less than \(\$ 3000\) (5000DM). Such a machine can do over 25 million 15-digit calculations per second; outperforming a Cyber 7600 from the late 1960's.

\section*{References for Chapter \#04}
(1) Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables Milton Abramowitz \& Irene Stegun NBS/Dover, New York, USA 1970
(2) Funktionentafeln mit Formeln und Kurven Herrs Drs. Eugene Jahnke und Fritz Emde G.E. Stechert, Germany, 1941

\section*{Chapter 05}

\section*{Integrals Involving Wexzals}

\section*{INTRODUCTION}

The Calculus is one of mankind's greatest achievments. It enabled one to now solve dynamic problems (where there is a rate of change) instead of just classical static problems. The Calculus had been in the making since Johann Kepler computed volumes of wooden beer kegs via a numerical technique similar to Simpson's Rule. Sir Isaac Newton and Gottfried Von Leibniz are today considered co-inventors of the Calculus because they were the first to state that differentation (computing slopes) and integrating (computing infinite sums) are inverse operations. Since the 1670's, the theory behind the Calculus has been made more rigorous.

Calculus (as taught in U.S. universities) is very much like joining the army. First year (Freshman) Calculus is "boot camp" for mathematics and physics majors. In the army, the recruit is told by his drill sergeant, "Here is your uniform and rifle, recruit! Learn it, live it, love it! Now drop and give me 50 [pushups]!". The university student buys a 1000 page calculus text and before he realizes it, he is cranking out integrals at 3 AM in his dorm. Why the focus on computing integrals?

Integration is the act of finding the function that when differentated gives the original function back. This sought-after function is called the integral of the original function. The integral also gives a formula for the area under the curve of the original function. When one solves a differential equation (equation with derivatives in it), the last step is to compute an integral. So a first year student is really practicing the "end-game" of solving differential equations. In his second or third year of study, he will learn the theory of differential equations. Since he has had much practice in computing integrals, this need not be focused on.

There is one thing that is sometimes overlooked in all of this. Integrals of some functions cannot be computed in closed form. These integrals are given names and tabulated. The most famous of these are the Jacobi Elliptic integrals. These are used to compute the distance a planet travels in its orbit around the sun. If the orbit were a circle, then the calculation of the distance is just 2 * Pi * radius_from_sun. But because the orbit path is an ellipse, there is no closed form (with respect to standard functions) solution. These integrals got named (due to their importance) and tables of integrals involving these functions and values have been compiled also.

From the 1820 's to 1900, a branch of mathematics called "Higher Analysis" was devoted to the topic of new integrals and their properties. Functions like the Gamma Function, Bessel Functions (all kinds and orders). Spence's Integral and others have been compiled. This activity reached a peak in the 1890's when it became almost a "sport" for mathematicians to add to the growing stockpile of integral formulae. The lists grew more baroque and exotic. Today, we have whole mathematical handbooks devoted to lists of integrals. [05.01] By 1914, between George Canter's Set Theory and David Hilbert of Goettingen call for mathematicians to solve theoretic problems involving the foundations of mathematics, interest in Higher Analysis tapered-off. Today, super fast computers can numerically solve differential equations that would have one of these exotic integrals as a solution. BFI \(\{05.01\}\) has replaced elegance.

When one learns the various techniques of integration, one learns that,
```

| 1 x
| 10 dx = - * 10 + c

```
and,
```

$1 \quad 3$
| 2 x
$\int \mathrm{d} x=--+c$
3
/

```

But what about
```

/
| x
| dx = ?
|
/

```

Equation (05.03) cannot be computed in closed form. Neither can
```

/
|
crt(x) dx
|
/

```

Both of these do lead to a new higher unnamed function.

\section*{INTEGRALS INVOLVING THE WEXZAL FUNCTION}

If we cannot (yet) compute the integral of the Coupled Root, can we nevertheless compute the integral of the Wexzal? Yes, it is surprisingly easy


From this we get,
```

$\left.\left.\mid w z\rceil(x) d x=\frac{1}{-} * x^{*} w z\right\rceil(x)+\underset{4}{m} *[w z\rceil(x)-1\right]+c$
1

```

It was found that the integrals of \(x^{*} w z 1(x), 1 / w z 1(x), x / w z 1(x), w z 1(x)^{\wedge} 2\) and sqrt[wzl(x)] could be calculated in closed form using only the elementary functions and the Wexzal. The question became "Using just the elementary functions and the Wexzal, can any 'simple' Wexzalic expression be integrated in closed form?"

In April of 1983, the work was begin on a related question. Does the series,
inf
```

\ 1
> ------- = ?
/ k*wzl(k)

k=1

```
converge? If answer this, we can use the "Integral Test" for series convergence. This involved computing the integral,
```

/inf
| 1
| ------- dx = ?
| x*Wzl(x)
/1

```

Using wzl(x)~x/log(x), we can see that this integral converges. The problem is "transformed" into,
```

/inf
log(x)
| ------ dx < inf because log(x)<x for x-->inf
x*x
/1

```

To compute this numerically on a PC-4 pocket computer (battery powered 1568 step BASIC programmed machine) would have been difficult as the problem stood due to the very slow convergence. To speed-up convergence, we re-write (05.08) as,
```

/inf
| dx
| -------- = 0.6508866537...
| wzl(e^x)
/0

```

We then use Simpson's Rule with increasing number of intervals to obtain the approximation given.

Another related problem was the following: The integral of \(d[w z l(x)] / d x\) is just wzl(x). It can be shown (see Chapter 06) that,
\[
\begin{aligned}
& \text { d } w Z 1(x)=---\ldots \quad \text { wZl }(x) \quad 1
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{r}
m+-----1 \\
w z 1(x)
\end{array}
\end{aligned}
\]

What is the integral of \(w z(x) / x\) ? The last expression in (05.11) suggests the Exponential Integral. This is a function that is tabulated in the Abramowitz \& Stegun Handbook of Mathematical Functions. Jahnke \& Emde's Handbuch contain it also. To compute the integral of \(\mathrm{wzl}(\mathrm{x}) / \mathrm{x}\) we do the following,

```

/ /
$|\mathrm{m}+\log (\mathrm{y}) \quad| \quad \mathrm{m}$
| ---------- dy $=\mid-----d y+y$

```
```

/ log(y) |}\operatorname{log}(y

```


So we have as final result
```

/
| wzl(x)
| -----dx = wzl(x) + Ei{ln[wzl(x)]} + c
x
/

```

Following the same idea, (05.08) can be computed in closed form also. It is,
```

/
| dx 1
| ------- = ------ - Ei{-ln[wzl(x)]} + c
|*wzl(x) wzl(x)
/
| x^{\star} wzl(x) wzl(x)
/

```

It appears that the Exponential Integral "fills-out" the list of Wexzalic integrals that can be computed in closed form. It is most useful for expressions involving reciprocals. An example will make this clear.



But...


```

/ wZl(-) wZl(-)
$x \quad x$

```

Which contains the Exponential Integral. Equation (05.15) is really the integral of \(1 / \log [w z 1(x)]\). Can this help in computing integrals involving Coupled Roots?

\section*{INTEGRALS INVOLVING COUPLED ROOTS}

There is no (known) way to compute the integral of Coupled Roots without defining a new function that is the integral of the Coupled Root. However, some Coupled root related expressions can be integrated in closed form.
```

$\left\lvert\, \begin{array}{cc}d x & -\ln [\operatorname{crt}(x)]-2 \\ ---\ln +-\operatorname{crt}(x)^{\wedge} 2 & \operatorname{crt}(x)\end{array}\right.$

```

By inspection we can show that,
```

/inf
| dx
| --------- = 2
| x* crt(x)^2
/1

```

Another example is,


Since Coupled Roots are slower growing than logarithms, it would be of interest to compute,


Which is expected considering that,
```

/inf
| dx
| --- = 1
| x^2
/1

```

In order to compute the integrals of \(x^{\wedge} x, 1 / x^{\wedge} x, \operatorname{crt}(x)\) and \(1 / \operatorname{crt}(x)\) four new functions need to be defined.

\section*{INTEGRALS THAT CANNOT BE WRITTEN IN CLOSED FORM}

There are integrals involving Wexzals and Coupled Roots that have, so far, resisted solution. Amoung them are, x/wzl(e^x) [used in gunpowder pressure curve research], \(w z l(x){ }^{*} w z l(1 / x)\) [theoretic interest in product of two terms one of which contain a reciprocal], \(\log (x) * w z 1(x)\), wzl(x)/e^(k*x) [used for LaPlace transforms] and others. The small collection given in the appendix is just a start in an area that requires more research.

\section*{CONCLUSION}

Equations involving Wexzals are, in general, easier to integrate than those involving coupled roots. It was believed that the Exponential Integral could be used to aid in integrating all Wexzalic equations. This appears to not be true as there are integrals that (so far) cannot be integrated in closed form. Almost no research has been done on combining trig functions with the Wexzal function (with an eye towards FFT's and vibration theory).
05.01:

BFI means "Brute Force and Ignorance". This is not meant in a negative way but refers to taking advantage of the speed of computers to solve
mathematical problems. The best example is the "Traveling Salesman Problem" where every path is tested for least cost. It would be better to derive the optimal solution instead of having a computer try every single
combination/path to find the lowest cost. Sometimes the derivation is not possible and/or the derivation would take longer than it would to just have the computer find the solution. Many mathematicians look upon this method of solving problems as "uncouth".

Most scientific research centres that perform this kind of work use the most powerful computers available such as Cray Y-MP/C-90's, Convex C-3800's and NEC SX-3. Unlike "pure" mathematicans, applied mathematicans are more interested in the practical solution to problems.

\section*{References for Chapter \#05}
(1) Summen-Produkt-und Integral Tafeln Gradstein \& Ryshik
Verlag Harri Deutsch
Thun Frankfurt am Main, Germany 1981
(2) Asymptotic Expansions of Integrals Norman Bleistein \& Richard A. Handelsman Dover Publications, Inc, New York, 1974

\section*{Chapter 06}

\section*{Asymptotics Involving Wexzals}

\section*{INTRODUCTION}

Asymptotics concerns itself with describing functions as their argument goes to infinity. Most of the time, this helps to simplify calculation and analysis as minor terms in the expansion can be ignored. For two functions, \(f(x)\) and \(g(x)\) we say \(f(x)\) is asymptotic to \(g(x)\) when,
\[
\lim _{x-\inf } \begin{array}{ll} 
& f(x) \\
g(x) \tag{06.01}
\end{array}
\]

This is written as,
\[
\begin{equation*}
f(x) \sim g(x) \tag{06.02}
\end{equation*}
\]

A simple example is,
\[
x^{2}+x \sim x^{2}
\]

What this says is "for very large \(x\), the linear term ( \(x\) ) is overshadowed by the \(x^{\wedge} 2\) term. Also \(\left(x^{\wedge} 2+x\right) / x^{\wedge} 2=1+1 / x\) and as \(x-->i n f i n i t y\), the \(1 / x\) term disappears. Therefore \(x^{\wedge} 2+x \sim x^{\wedge} 2^{\prime \prime}\).

We can also use this notation to describe a function about zero by using \(1 / x\) instead of \(x\) in (06.02). By using classical MacClaurin series on 1/wzl(x) we obtain,
\begin{tabular}{|c|c|c|c|}
\hline 1 & 1 & 3 & 8 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline
\end{tabular}

WZ1 (-)
X
The German mathematician, Du Bois Reymond [06.01], in 1874 wrote a paper, "On Asymptotic values, Infinite Approximation and Resolution of Equations" outlining theorems that apply for different types of equations. In 1910, G.H. Hardy in his "Orders of Infinity" [06.02] further expand on this topic \(\{06.01\}\). Hardy's main type of function was one that had the following property:
\[
\begin{align*}
& d f(x) \quad f(x) \\
& \text {----- ~ ---- }  \tag{06.05}\\
& \text { dx } \quad x
\end{align*}
\]

The Wexzal obeys (06.05),
\[
\begin{aligned}
& \text { d } \quad 1 \quad \text { WZl }(x) \\
& --W Z 1(x)=-------------- \\
& d x \quad x \quad x \\
& \text { m + ----- } \\
& \text { wzl (x) }
\end{aligned}
\]

In chapter \#03, it was shown that,

This says the Wexzal really boils down to something simple as \(x\) goes without bounds. Unlike most trig or logarithmic functions, there is no simple known addition theorem for the Wexzal. That is, we do not know what the form of \(g(x)\) and \(h(x)\) would be in.
\[
\begin{equation*}
w z l(a+b)=g(a)+h(b) \tag{06.08}
\end{equation*}
\]
but there is an asymtotic version that warrents attention.

\section*{ADDITION THM}

For a function \(f(x)\) such that,
\[
\lim _{x->\inf x}----=0
\]
and,
\[
\begin{equation*}
f(x 2)>f(x 1) \text { when } \times 2>x 1 \tag{06.10}
\end{equation*}
\]
we have,
\[
w z l[x+f(x)] \sim w z l(x)+\begin{gather*}
f(x)  \tag{06.11}\\
----- \\
\log (x)
\end{gather*}
\]

Proof:
Using (06.07) we have,
\[
\begin{aligned}
& x+f(x)
\end{aligned} \quad x+f(x)
\]

We said that \(f(x) / x->0\) so,

Therefore,
\[
w z l[x+f(x)] \sim w Z 1(x)+\begin{gather*}
f(x)  \tag{06.12}\\
\\
\log (x)
\end{gather*}
\]

Let's test this: For \(f(x)=1\) we have,
\[
w z 1(x+1) \sim w z 1(x)+\frac{1}{\log (x)}
\]

Which is in agreement with (06.06) in that,
\[
\begin{align*}
& \begin{array}{ccc}
\text { wzl }(x) & x & 1 \\
--------------------1
\end{array}  \tag{06.14}\\
& x \quad x^{*} \log (x) \quad \log (x)
\end{align*}
\]

For an equation like wzl ( \(x^{\wedge} 2+x\) ) we make the substitution \(z=x^{\wedge} 2\) and would expand \(w z 1[z+s q r t(z)]\) thus obtaining,
\[
\begin{equation*}
w z 1\left(x^{\wedge} 2+x\right) \sim w z 1\left(x^{\wedge} 2\right)+\frac{x}{2^{*} \log (x)} \tag{06.15}
\end{equation*}
\]

\section*{WEXZALIC SHIFTING THM}

For a function \(f(x)\) that is monotonic increasing (as \(x\) gets larger, so does \(f(x))\), one expects,
\[
\begin{equation*}
\operatorname{crt}[f(x)]<f(x) \text { for al1 } x>1 \tag{06.16}
\end{equation*}
\]

What happens when one computes \(\operatorname{crt}\{w z 1[f(x)]\}\) instead of just \(\operatorname{crt}[f(x)]\) ? We expect
\[
\begin{equation*}
\operatorname{crt}\{w z 1[f(x)]\}<\operatorname{crt}[f(x)] \text { as } x \text {-->infinity } \tag{06.17}
\end{equation*}
\]

The question is "How much less? It is measurable?" Let \(y=f(x)\) and \(z=\log (y)\). We have by use of the addition theorem:
\[
\begin{aligned}
\operatorname{crt}\{w z 1[y]\} \sim & \operatorname{crt}[--\cdots--]=w z 1\{\log (y)-\log [\log (y)]\}=w z 1[z-\log (z)] \\
& \quad \log (y) \\
\operatorname{crt}\{w z 1[y]\} \sim & w z 1[z-\log (z)] \sim w z 1(z)-1=\operatorname{crt}(y)-1
\end{aligned}
\]

Therefore,
```

crt{wzl[f(x)]} ~ crt[f(x)] - 1

```

This says that "wrapping" a Wexzal around \(f(x)\) before taking the coupled root just decreases the value of the coupled root by one.

\section*{INVERSE FACTORIAL EXPANSION}

Chapter 04 was about solving equations in closed form. One equation that cannot be solved in closed form is the Factorial function. The Factorial function is defined for integers as,
\[
\begin{equation*}
n!=1 * 2 * 3 * 4 \ldots n \tag{06.19}
\end{equation*}
\]

For non-integer arguments, the Gamma function is used. For large \(x\) Stirling's approximation is used,
\[
y=x!\sim x^{x} * e^{-x} * \operatorname{sqrt}(2 * P i * x)
\]

The fact that Stirling's formula has a coupled exponent in it gives a clue on how one might be able to get an asymptotic expansion for the inverse factorial function.

The first thing we see is the term " \(x^{\wedge} x^{*} \operatorname{sqrt}(x)\) " which could make a problem in that we do not have a means to solve this exactly. We take the guess that

We check this by computing the logarithm base e of the left hand side and getting,
\[
\begin{equation*}
(x+0.5) * \ln (x+0.5)-0.5 \tag{06.22}
\end{equation*}
\]

We know,
\[
\begin{equation*}
\ln (x+k) \sim \ln (x)+\stackrel{k}{-} \text { for fixed } k \tag{06.23}
\end{equation*}
\]

So using (06.22) and (06.23) we get,
\[
(x+0.5) *\left[\ln (x)+\frac{0.5}{---]}-0.5=x * \ln (x)+0.5+0.5 * \ln (x)+\underset{x}{0.25}-0.5\right.
\]

Which when x-->infinity, reduces to
\[
\begin{equation*}
x^{*} \ln (x)+0.5 * \ln (x) \tag{06.24}
\end{equation*}
\]

This becomes,
\[
\begin{equation*}
x^{\wedge} x^{\star} \operatorname{sqrt}(x) \tag{06.25}
\end{equation*}
\]

Therefore (06.21) is true.
Now, we take Stirling's formula and after moving sqrt(2*Pi) to the left hand side and using (06.21) we obtain,
```

 y
 ---------- ~ cxt(x+0.5)/sqrt(e)*exp(-x)
sqrt(2*Pi)

```

Moving sqrt(e), which is just a constant, to the left hand side, we have
```

y*sqrt(e)
--------- ~ cxt(x+0.5)*exp(-x)
sqrt(2*Pi)

```

Let \(z=x+0.5\) so we can "clean-up" the 0.5 constant term
```

y*sqrt(e)
--------- ~ cxt(z)*exp[-(z-0.5)] = cxt(z)*exp(-z)*sqrt(e)
sqrt(2*Pi)

```

Dividing both sides by sqrt(e) causes that term to disappear.
```

 y
 --------- ~ cxt(z)*exp(-z) = (z/e)^^z
sqrt(2*Pi)

```

Raise both sides to \(1 / e\) power so we can get a coupled exponent term on both sides.


Take coupled root of both sides then multiply by e to get,
```

z ~ e * crt{[y/sqrt(2*Pi)]^(1/e)}

```

But... \(x=z-0.5\) so we obtain the final result:
```

x ~ e * crt{[y/sqrt(2*Pi)]^(1/e)} - 0.5

```

Let us try a few numbers:
\begin{tabular}{|c|c|}
\hline X & Inverse Factorial \\
\hline - & \\
\hline 6 & 2.990531111 \\
\hline 24 & 3.993858573 \\
\hline 120 & 4.995563516 \\
\hline 3628800 & 9.998313202 \\
\hline \(20!\) & 19.99932716 \\
\hline \(50!\) & 49.99978963 \\
\hline 10^100 & 69.95743568 \\
\hline 10^1000 & 449.9099614 \\
\hline 10^1000000 & 205022.1719 \\
\hline
\end{tabular}

Fig 06.01
Figure 06.01 shows that \((06.26)\) gets a smaller relative error as the argument increases.

Following the same type of process as before, one can obtain asymptotic solutions to equations such as,
\[
y=\frac{(2 * x)!}{-----} \begin{gather*}
x!
\end{gather*}
\]

The solution is,
\[
x \underset{4}{\sim} \stackrel{e}{-} \operatorname{crt}\left\{[y / \operatorname{sqrt}(2)]^{\wedge}(4 / e)\right\}
\]

\section*{ASYMPTOTICS INVOLVING COUPLED EXPONENTS}

An interesting result that is somewhat unexpected is the asymptotic expansion of,
\[
y=\frac{c x t(x+1)}{\operatorname{cxt}(x)}
\]

Being a faster increasing function than the exponential we expect the ratio to be greater than a constant. For the exponential (base 10) we have,
\[
y=\frac{----=10}{10}{ }_{10}^{x+1}=10
\]

Taking the natural logarithm of (06.29) and expanding yields,
\[
\begin{equation*}
\ln (y)=(x+1) * \ln (x+1)-x * \ln (x) \tag{06.31}
\end{equation*}
\]

Using the fact that,
\[
\begin{equation*}
\ln (x+1) \sim \ln (x)+\frac{1}{-} \tag{06.32}
\end{equation*}
\]
we obtain,
\[
\ln (y) \sim(x+1) *\left[\ln (x)+\begin{array}{c}
1  \tag{06.33}\\
-1 \\
x
\end{array}-x^{*} \ln (x) \sim \ln (x)+1+\begin{array}{l}
1 \\
- \\
x
\end{array}\right.
\]

We "ignore" the \(1 / x\) term and have,
\[
\begin{equation*}
\ln (y) \sim 1+\ln (x) \tag{06.34}
\end{equation*}
\]

Which means the final result (first order term only) is,
\[
\begin{equation*}
y \sim e^{*} x \tag{06.35}
\end{equation*}
\]

Further refinement on this leads to,
\[
y \sim e^{\star} x+\frac{e}{e} \begin{gather*}
e  \tag{06.36}\\
2
\end{gather*} \frac{---\ldots}{24 * x}+\ldots
\]

\section*{ASYMPTOTIC EXPANSION INVOLVING AN INTEGRAL}

In chapter 05 we saw that the integral of \(1 / w z 1(1 / x)\) involved the Exponential Integral. It is,


We know that,

> wz1 ( - )
x
By integrating term by term in (06.38) we can say as a "first cut" the asymptotic expansion of (06.37) would be,
\[
S(x) \sim x-\underset{m}{\ln (x)} \frac{3 / 2}{-\cdots---\cdots}+\ldots
\]

By using the right hand side of (06.37) along with the asymptotic expansion of \(\mathrm{Ei}(\mathrm{x})\) one can obtain the following slightly more refined result:
\[
\begin{aligned}
& \ln (x) \quad 1 \\
& \text { 3/2 }
\end{aligned}
\]
where "gamma" is the Euler Constant and is \(=0.5772156649 \ldots\)
The only difference between (06.39) and (06.40) is the constant term. This constant term is about \(=2.542964134\)

Why is this integral so important? It is used in the automobile acceleration model (Chapter 13). The asymptotic expansion makes it easier to obtain approximate answers when one does not have access to either a table or programmable calculator.

\section*{CONCLUSION}

Some of the asymptotic properties of the Wexzal function were presented. These enable the researcher to obtain a "long-range" view of the behavior of the Wexzal. The Wexzal does not (unlike other functions) have "friendly" duplication formulae that make it easy to obtain numeric results. It does however, have asymptotic properties that are distinctive; the most noteworthy being the inverse factorial function. The authors are unaware of any application this might have but they believe it could serve in computer science (algorithm complexity theory) or statistics.
06.01:
G. H. Hardy was England's top mathematician in the beginning of the 20th century. He lectured at Cambridge and Oxford University. He was a pure mathematician who had no interest in applications but prefered to work in number theory and other theoretic areas.

He was a bit of a nationalist who wanted to improve the teaching of mathematics in England. Since the Newton/Leibniz dispute of the 1680's the English tended to stay with Newtonian notation and standards while the rest of the world moved ahead with the Leibnitzian system which while invented later was better.

In the 1670's Sir Isaac Newton of England and Gottfried Von Leibniz of Germany "invented" Calculus. The calculus was in "the making" for sometime but the two men were the first to pull all of the needed theory together to make it a unified system. Newton called his "Fluxions" and used it to solve planet orbit problems. He published first and used the well-known "dot" notation to denote time derivatives. Newton's main focus was to solve physics problems. Von Leibniz was a philopher and natural scientist who was interested in many fields including politics. He wanted to solve physics problems also. Leibniz invented the well-known "dy/dx" notation to better show that a derivative was a ratio. His notation was more powerful in that new propeties of derivatives can be discovered just by "playing" with the notation. Leibniz publish in the early 1680 's and Newton accused him of "stealing" Newton's work. That is when the problems started. Newton was a scientific "super-star" by this time and his opinion was law (in England). He was also known to be sometimes "loud" and arrogant. Leibniz was much calmer and tried not to get caught up in the dispute. Mainland Europe (France, Saxony, etc.) saw the superiority of the Leibniz notation and started using it. During this time, the French and England were not on friendly terms. They competed for empire in the New World.

By 1890, the "place to be and be seen" in the mathematics world was Goettingen, in Lower Saxony (Niedersachsen) in the heart of Germany. Germany had unified in 1871 under Kronprinz Otto Von Bismarck. Germany now had an empire (Deutsches Reich), a Kaiser and the best scientific/mathematical establishment on the planet. Germany was now becoming Europe's new "superpower". The 1890's was a very nationalistic time and prestige meant everything. The English had their world-wide empire. The Americans sent steam ships to Japan to demonstrate Western technology while the Germans were busy building-up their industries. Even popular music was involved. The American composer John Philip Sousa and the German composer Karl Teike wrote
marches reflecting the era and the glories of their countries. Today we hear these marches during national holidays such as 4th of July.

From the time of Fredrick the Great (Friedrich der Grosse) of Prussia, Germany has always had a strong university tradition. Goettingen was founded in 1737 by an English king, King George of England \& Hannover as Lower Saxony (capitol Hannover) was under the English crown. When Lower Saxony came under Prussian rule, it was subjected to the same Prussian ideas of efficiency and Ordnung along with everything else. The German mathematician Felix Klein (famed for the Klein bottle) was a diplomat and was able to get the American banker/baron J. Rockerfeller to invest in Goettingen. This enabled the university to upgrade the library and to set-up a physics institute as well. By the 1890's Goettingen attracted world-wide attention as being the center of Western mathematics. It enjoyed this reputation until the end of WWII. By that time most of the mathematicians left for England or the U.S.A. to aid in America's war effort.

In 1987 one of the authors visited Goettingen to do research there and to see the historic sights. Goettingen is a university town with about 110,000 people. Unlike American universities (campuses) the "university" is spread out over the entire town. The Physics building is at one part of town; the mathematics building at another location. Students travel from building to building by 3 -speed bicycle on the Berliner-Strasse. The house where Otto Von Bismarck studied law is still standing. There is a memorial to Karl Friedrich Gauss and a beerhall named after him. Today, we would say Gauss is a "local hero". Since 1990, Gauss is featured on 20-Deutschmark bills.

There is also a memorial to the solders killed in WWI. One can almost hear the sound of marching solders in time to Teike's "Alte Kameraden" played by a brass band as the Field-Gray spiked-helmeted Reichwehr marches off to the Front fuer Kaiser und Vaterland.

In the mathematics building on the second floor is a display of old slide-rules and other computing devices dating from Leibniz time. The main floor has a mathematical library with books from as far back as the 1700 's to today. There is also a large collection of mathematical journals from around the world. A large percentage of the collection is composed of journals from the American Mathematical Association (AMA).

DuBois Reymond's paper was found in Crelle's Journal. Crelle's Journal is regarded by many to be "The Journal" to be published in due to Crelle's very high standards. Hardy's "Orders of Infinity" was found amoung the textbooks. Hardy's book presents the theory of asymptotics based on the concept of "known" functions. Known functions are those used as "benchmarks" to compare the new unknown function in terms of rate of growth. The exponential function, \(\exp (x)\), is considered to be known. The power functions, \(x^{\wedge} n\), are also known. Based on this, one can determine the basic asymptotic properties of an unknown function. Hardy "cleaned-up" Reymond's work in instead of defining the "type" of a function to be,
\[
\begin{aligned}
& f(x) \\
\operatorname{type}[f(x)]= & ---- \\
& d f(x) \\
& ---- \\
& d x
\end{aligned}
\]

Hardy changed it to be,
\begin{tabular}{|c|c|}
\hline & df(x) \\
\hline & dx \\
\hline type[f(x)] & ----- \\
\hline & \(f(x)\) \\
\hline
\end{tabular}
and presented further development of the theory along with some applications. It is a "dense" book but careful reading leads one to most interesting
results.
References for Chapter \#06
(1) Reymond, Paul Du Bois, "Ueber asymptotischen Werte infinitaere Approximationen und infinitaere Aufloesungen von Gleichungen" Universitaet Tuebingen, Germany, 1874
(2) Hardy, G.H. "Orders of Infinity" Cambridge Press, England, 1910

\section*{Chapter 07}

\section*{Numerical Calculations \& Computing Devices}

\section*{INTRODUCTION}

Up to this point, we have discussed the theoretic aspects of Coupled Roots and Wexzals. Included are integrals, solution of logarithmic equations and the main asymptotic property. This is fine for a foundation into the theory, but initial Wexzal results came from numerical research. The first part of this chapter outlines the rise of the calculator and microcomputer and the role they played in early Wexzal research.

\section*{CALCULATORS}

In 1975, pocket calculators had just dropped in price to the point where they caught the public's attention. A TI SR-50A was \(\$ 300\) (US) and it was one of the best scientific models at the time. Hewlett Packard (HP) unvailed the HP-67 which was a scientific programmable pocket calculator which cost over \(\$ 700\) (US). This was, in essence, the first pocket "computer" in that the HP-67 could perform looping and branching (repeat a set of steps over \& over and jump to different parts of the program) like a "real" mainframe computer. It used the famed RPN \{07.01\} system unlike the TI, Sharp and Casio which used AOS. Scientific calculators used scientific notation and displayed results out to 10 decimal places. By the end of 1975 , slide rules (the unoffical symbol of engineering and science) was delegated to the museum. The 3-decimal-place analog irovy coated "slip-stick" just could not compete against the 1970's digital "Wundermaschine".

Small calculators, which could only add, subtract, multiply and divide cost from \(\$ 10\) to \(\$ 50\) depending on the model. These small machines have come to be known as "4-bangers" because of their limited abilities. They did not have scientific notation but could display answers out to 8 decimal places. There were many different brands such as Bomar (the Bomar Brain), Lloyds. Unisonic and others. These low cost machines launched a public debate centering on allowing students to use calculators in schools. This ranged from grade school to university. Many thought that students would be over dependant on the machines. Others stated that calculators were the wave of the future and anyone who did not know how to operate one would be "left behind".

Most calculators, up to 1977, used LED (Light Emitting Diodes) that displayed numbers in a bright, fire-like, red display (TI \& HP). Other models had bright "Kelly-Green" displays (Sharp, Unisonic). So-called Nixie Displays were used in older desk-top models like accountants would use. These numbers appeared more rounded and easier to read than the well known 7 segment displays used in LED models. In 1976, the first LCD (Liquid Crystle Displays) appeared. They have a silver, liquid, placid appearance that can be read in day-light as they worked by reflected light instead of emitted light (LED). LCD were a boon for another reason: They expanded battery life greatly as the bulk of battery power was devoted to powering the LED display. A set of AA batteries would die within two hours of heavy use. With the new LCD, it was possible to build credit-card size machines that used "watch" batteries.

By 1979, the market "shake-out" (where the little companies get killed off and only the "big-boys" remain) was complete. The "big-4" are Texas
instruments (TI), HP, Sharp and Casio. For \(\$ 100\) (US) one could obtain a Casio Fx-501P programmable calculator with LCD display and CMOS memory. This CMOS technology was a new low-power chip technology that enabled the machine to "remember" the program even when turned-off. Older models, when turned-off, would "forget" the program. These machines used a magnetic strip that was the size of chewing-gum for storing programs.

In September 1980, the first pocket computers appeared. These machines looked like calculators except they had tiny QWERTY keyboards and used BASIC as the programming language. They featured 12-character LCD displays and memories as large as 2 K bytes. These machines had \(1 / 4\) the power of the early home computers (Apple II, CBM PET, etc) and yet were battery powered. The best known machines were the Sharp PC-1211 and PC-1500, Casio fx-702P and fx-700P (a.k.a. Radio Shack PC-4). Their main advantage over programmable calculators was that BASIC was used which meant a (somewhat) standard language can be used. Pocket computer memories were (compared to programmable calculators) very large. The main drawback to pocket computers is that they do not contain as many built-in functions as programmable calculators. Most of the early machines did not have the factorial or matrix functions built-in. A skillful user would have no problem programming these in. As recent as 1991, these machines appeared to be more popular in Europe then in the U.S.A. One of the authors, while on holiday in Munich, Germany noted that many computer/office-supply shops sold these machines. University students are largest users of pocket computers due to their low cost and ease of use. By 1995, low-end laptop PC-based computers have more-or-less polished off these machines.

Machines got smaller, faster and "smarter". By 1986, graphics calculators appeared. They use a dot-matrix display that looks like a small TV screen. These machines can plot graphs of functions and draw pictures. Casio, HP and TI are the leaders with these machines. They have the memory, built-in programs and speed to rivel early mini-computers of the late-1960's. Today, for \(\$ 100\) (US) one can buy a machine with the following features:
> 32K (bytes) memory
Communicate with PC type computer via cable
Run for over 200 hours on a set of watch batteries
Graphic displays ( \(96 \times 64\) pixels)
> 20 different program areas
Ability to perform (along with the standard scientific functions), Matrix operations (Inversion, Determinant, etc) Complex Numbers Statistics (Mean, Std. Deviation, Linear Regression) Coordinate transformations Differential Equations \& Integration (Runge Kutta/Simpson) Programmable with >10 levels subroutine levels, etc. This sounds much like a well equipped PDP-11/04 from early 1970!

Calculators have certain features that are different from most computers. Calculators perform their calculations in Binary Coded Decimal (BCD) where each digit is represented by 4 bits. This makes for a more complex circuit set as the machine needs to perform special bit manipulations instead of performing the calculation in floating point binary. BCD has the advantage of maintaining precision as there is no loss due to converting to/from decimal. Most calculators have a dynamic range of \(10^{\wedge}(+-99)\) instead of some value that is a power of two like \(1.7 * 10^{\wedge} 38\) Scientific calculators employ what is known as "Guard digits". Guard digits are extra digits that are used in a calculation to maintain precision. The result is rounded to the final answer and then presented to the user. The Casio Fx series use 13 decimal digits for all calculations. The user only sees 10 . The 3 guard digits are used to protect against rounding errors. The user can assume that (given a non ill-conditioned sequence of calculation) the 10 displayed are correct. FORTRAN programmers do the same thing when they display the value of a DOUBLE PRECISION variable ( \(\sim 15\) decimal digits) out to 8-10 places. Because calculators are used only for numeric calculations, great care goes into the construction of the algorithms used for computations. Tests such
computing SIN(x) followed by ARCSIN(x) [user tries different values of \(x\) ] and then subtracting \(x\) off should result in a zero value.

Programmable calculators measure their memory size in terms of "number of memories" or instruction "steps". A "step" is a single instruction such as addition, multiplication, SIN(), SQRT(), subroutine call, etc. A "memory" location can hold one floating point number. For the HP models, 7 steps is the same as one memory; for the Casio models it is 8 steps \(=1\) memory. Memory size has increased greatly over the years. The earlier models had 128 to 512 steps of programming space. Today machines range from 4096 steps up to over 32768 steps. The programming language on a programmable calculator is like assembly language. Included are LABEL, GOSUB, ISZ, etc. instructions for program control. The main feature is that the codes are entered just by pressing the keys for performing the desired operations in the correct order. The more advanced calculators use letters \(A-Z\) for memory locations (like BASIC); earlier models used numeric locations.

The biggest advantage calculators enjoy over computers (outside of their small size and low cost) is the amount of built-in "smarts". Most high-end scientific programmable calculators have the ability to perform matrix operations, numerical integration, solve differential equations and plot rectangular \& polar plots. All of this is stored in the machine's ROM (Read Only Memory). The user can call these functions from his program and thus write programs to solve complex problems with little effort.

Speed is the biggest drawback with calculators. There are many ways to measure computer speed. For our use here, the measurement is in FLoating-point Operations per Second (FLOPS). For modern computers the prefix Mega (10^6) is used. In literature involving supercomputers such as CRAYs and CONVEXes, the peak MFLOPS figures are given. This is jokingly known as "Macho-FLOPS". A well-known benchmark called LINPACK \(\{07.02\}\) is used to obtain MFLOPS ratings. LINPACK concerns itself with matrix calculations. There are no transcendental function (SIN(x), LOG(x), etc.) calculations used in LINPACK. Figure 07.01 shows the speed of different computing devices. Note that all values are approximate. For computers, 64-bit numbers are used.
\begin{tabular}{|c|c|c|}
\hline Machine & MFLOPS & Notes \\
\hline ------- & ------ & ----- \\
\hline Casio Fx-7500G & 0.0002 & Fast graphics calculator \\
\hline IBM-PC (8086/87) & 0.012 & Original IBM-PC \\
\hline 286-12 w/ 287 & 0.028 & From 1984 \\
\hline VAX 11/780 & 0.14 & Original VAX from 1977 \\
\hline 386DX-25 w/ 387 & 0.25 & First 32-bit home computer \\
\hline PDP-10 & 0.33 & DEC mainframe \{07.03\} \\
\hline 486DX-33 & 1.4 & Popular CPU for PC \\
\hline Pentium 90 & 7.7 & Current (1995) PC \\
\hline SGI R4400/200 & 16 & UNIX based workstation \\
\hline DEC Alpha AXP 7700 & 40 & High end minicomputer \\
\hline CRAY C-90 & 1000 & Supercomputer with 1 CPU \\
\hline
\end{tabular}

Fig. 07.01

\section*{MICROCOMPUTERS}

Calculators gave the general public a "taste" of personnel computing. In January 1975, the first kit home computer, the ALTAIR was featured on the cover of "Popular Electronics" [a popular magazine in the U.S.A.]. This machine was aimed at electronic hobbiests who wanted to build a simple 8-bit computer. The memory was only 256 bytes (yes... a quarter of a K) and one entered programs by use of toggle switches. Two years later the APPLE and PET computers could be purchased for \(\sim \$ 1000\) (US). These machines had BASIC in ROM and 8 K bytes of memory.

Until the IBM-PC was unvailed on 12 August 1981, smal1 8-bit home
computers were viewed as "toys" (because they ran games) by the business world. Even the more advanced machines running CP/M (An operating system that existed before MS-DOS) were looked upon with suspicion as well. Early versions of BASIC on these machines supported only single precision calculations which meant only 6-7 decimal places of precision. The accuracy was poor as well as the writers of the BASICs encountered were more concerned with writing a general purpose language then in providing a serious scientific tool. The one exception to this was the HP-85 with a very powerful version of BASIC that supported graphics and 12 digit numbers with a dynamic range of \(10^{\wedge}(+-500)\). It was very expensive.

The IBM-PC made small microprocessor based computers "legit" in that "big-business" purchased these machines in droves. IBM also published data on how the machines worked so third party hardware \& software vendors can make products for this class of machine. With IBM's marketing muscle; CPM based machines disappeared overnight. IBM selected Microsoft to write their PC-DOS (what we today call MS-DOS) and selected Intel's 8088 microprocessor. The sequence of Intel processors, 8088-->286-->386-->486, etc. resulted in great increases in performance. A11 x86 microprocessors before the Intel 486 performed all floating point calculations in software which resulted in very poor FLOPS ratings. A special chip called a co-processor had to be installed to perform the calculations in hardware. They were named the same as the main processor except the number ended in a "7" instead of a "6" as in 8087-->287-->387. The focus of \(8088,286 \& 386\) machines was on office data processing such as word processing and spreadsheets. The quality of early PC software was very poor due to many software companies (and individuals) wanting to "get in on the act". By the time the Intel 486 appeared in 1989, the quality started to improve. The 486 was the first Intel microprocessor to have a built-in co-processor. It packed the computing "fire-power" of an IBM-370 mainframe. Mathematical/scientific programs such as MATRIXX, MATLAB (numerical matrix calculations), MATHCAD and MAPLE appeared. Mainframe quality compilers for FORTRAN, C and PASCAL from companies such as SVS, Lahey and Microway became within reach (costwise) for the interested public. Researchers are now able to obtain mainframe class (1970's mainframes that is) performance for little cost.

Scientists and mathematicians comprise less than \(10 \%\) of the computing population. What has fuelled the big demand for PC power is not from the scientific community but from the graphics community. Computer games are graphics intensive. Games like DOOM \{07.04\} and Wolfenstein3D use complex 3-D graphics to give the player a feeling that he is in another place. The 2-D games like the 1982 hit PACMAN, are passe. There are many companies specializing in constructing "Video Accelerators" which are computer boards with special processors to handle drawing the screen display so the main CPU does not have to perform that function. It would not surprise the authors to see RISC-based vector processors \{07.05\} used in video boards. This would greatly increase the speed of the graphics.

Today, one can buy for under \(\$ 2000.00\) (US) a home computer that has more computing power than a CYBER-7600 (60-bit CDC large mainframe which was the fastest machine in 1969 before the CRAY-1 appeared). The latest Pentium processors run at over 300 MHz which delivers more than 25 MFLOPS of performance. This ability allows PC class computers to run multitasking operating systems such as Linux. Linux is the UNIX operating system for PC's. It's advantage are several: It is based on a system well known to scientists and engineers and it is (near) free. A software group called GNU have written free C, FORTRAN and (yes...) Ada compilers to run under Linux. A multitasking system allows more than one user to use the system at one time or a single user to do several things at once, just like on a traditional mainframe.

The real power of computers lie not only in their calculating speed but in their ability to manipulate symbols (information) very quickly. In the mid 1960's a group of mathematicians and computer scientists at MIT developed a program called MACSYMA. MACSYMA had the ability to solve mathematical problems by symbolic means instead of using numerical methods. The program
was written in LISP which is a language used for list manipulation. MACSYMA "knows" basic mathematical rules like \(X *(Y+Z)=X * Y+X * Z\). By using these, it can answer questions like,
```

/2
| dx
| ----- = LN(3)-LN(2) = LN(3/2)
| $(x+1)$
/1

```

By employing basic integration rules, the program can return the answer in non-numeric form. The MIT researchers gave the initial version of MACSYMA the freshman calculus final exam to work on. MACSYMA scored over \(90 \%(!)\).

Today, the best known symbolic algebra systems are Mathematica (Wolfram Research Inc), MAPLE (Waterloo Software) and MACSYMA. These systems compete in the market place and they are still at the stage of development where it is still possible to devise a set of problems that will cause all but your favorite system to fail. However, these programs are useful in that they free the mathematician from boring symbolic calculation much as the pocket calculator frees one from doing arithmetic. If it wasn't for programs like these, a computer is really just a giant programmable calculator whose memory is measured in millions of "steps", is >10000 times faster, and is programmed in FORTRAN, BASIC, etc.

The foregoing was an overview of the types of computing devices developed over the years and how they have improved in performance. Early Wexzal work was on mainframes. The modern PC has, if nothing else, brought mainframe power to the general public. Of course, mainframes have moved up in performance as well. The entire computing spectrum (from calculators to supercomputers) all have moved up the performance curve so much in the past \(10-20\) years that today's calculators occupy the performance level of low-end 1970's minicomputers and today's workstations are 1970's supercomputers.

An interesting thing to note is the difference in how a modern programmable calculator and a modern laptop computer fill the need for a mathematical computing device. Ignoring the difference in size and computing power for just a moment, a programmable calculator has most of its' abilities "built-in" in ROM. A laptop is more software oriented in that a laptop is not built "knowing" how to perform matrix operations; one needs to buy software in the form of a mathematical package like MAPLE or a programming language compiler such as FORTRAN. This ability to "install" a program or language of your choice gives the user far greater flexibility than a calculator where the user has to accept the "language" and/or interface presented by the calculator. In the case of a programming language, the user can "home-brew" his own routines to perform matrix calculations, least-square calculations, etc. It is now up to the user to insure correct operation of his programs. In the case of the calculator, the user just needs to be sure that he has entered the data correctly. Bill Gates, the CEO of Microsoft, has described this as the "trend to 'softness'". Programmable calculators are the last bastions of "hardness".

What does this have to do with Coupled Root calculations? Calculators and mainframes were used for the bulk of the author's early efforts. At first glance, this would appear strange until one observes that mainframes and calculators have the ability to calculate to high precision.

There are two other numbers along with dynamic range and speed that describe the performance of the machine. They are the number of significant digits (or bits) and "machine epsilon". The number of significant digits tells the maximum number of digits (in a floating point number) the machine uses during a calculation. On most machines, a DOUBLE PRECISION number has 15 significant digits. Calculators have (on average) 13 digits with some of the newest models such as the Casio fx-9700GE having 15 digits. The reason for such high precision is to guard against round-off errors. As a contrast, a slide rule is good for 3 significant digits which reflect real-world analog measuring resolution. Most analog scales such as meters
(on electric equpment or cars) are good for 2 digits. The other number of importance is the machine epsilon. Computers compute using a finite number of digits so their resolution is finite. The machine epsilon is defined to be the largest number, EPS, such that \(1+E P S=1\). This is related to the number of significant digits used by the machine. EPS is given as a decimal number or as a power of 2. Most IEEE-754-1985 compilant computers have a machine epsilon of \(2^{\wedge}(-53)=1.110223 \mathrm{E}-16\). If we compute the logarithm of this number (and ignore the sign) we obtain the number of significant digits. In this case it is \(\log (E P S)=-15.9546 \Rightarrow 15\) digits. A Casio fx-9700GE has a value of \(\mathrm{EPS}=8.0 \mathrm{E}-14\) which gives the number of digits \(=\log (\) EPS \()=-13.097=13\) digits. For this calculator, this says the calculator can resolve to within 13 orders of magnitude in spite of the fact that 15 digits are used to perform arithmetic. Because Wexzals use logarithms, a test of the logarithm function needs to be made on the calculating device. The value of the logarithm should be correct to +/-1 digit in the least significant digit over the entire range of the logarithm function. This is one area where calculators were better than PC type machines until recent times. The early home computers such as the TRS-80, CBM PET-2001 and others had EPS=5.96E-8 => 7 digits. In the author's view, this was not going to "cut it" in spite of these machines having an easy-to-use BASIC language.

The performance and limitations of programmable calculators (slow speed and dynamic range of 10^(+-99)) influenced the approach as to efficiency (tight, elegent algorithms) and precision.

\section*{COUPLED ROOT CALCULATIONS}

Coupled Exponents increase in size very quickly. What this means is that high precision is required to reduce the amount of error generated by rounding, etc. For example,
\[
\begin{align*}
& \operatorname{CXT}(7.0000)=823543.0000  \tag{07.01}\\
& \operatorname{CXT}(7.0001)=823785.6447 \\
& \operatorname{CXT}(7.0010)=825972.7197 \\
& \operatorname{CXT}(7.0100)=848170.7786
\end{align*}
\]

This is due to this simple fact:
```

d x x
-- x = x * [1 + ln(x)]

```
dx
To see this effect, a number called the "Condition Number" is used. The condition number is used to tell how much the output value of a function varies with respect to a given change in the input. That is,

Condition numbers are used in control theory where one wishes to analyze a system (circuit, etc.) to determine if it is "well-conditioned" or "i11-conditioned". An ill-conditioned system is one where a small relative change in the input (e.g. \(+/-1 \%\) ) causes a large change in the output. It would be nice if the change in output varied less than the change in input.

For the Coupled Exponent, \(C=x \star[1+1 n(x)]\) which says the "system" gets more ill-conditioned the larger the input is. This situation places great demand on precision (see discussion above) and accuracy of the logarithmic function. Some numerical analysis texts state the following as a rough
rule-of-thumb concerning condition numbers: The number of digits lost due to rounding (on a finite precision machine) is approximated by \(\log (C)\).

The first question is "How to compute a Coupled Root?".
There is no way to compute a coupled root in a fixed number of steps (without using Wexzals). This means sometype of iteration method is called for. We try,
```

 x
 y = x
1/x
y = x

```

We then start with \(\mathrm{x}=1\) (or better value if we know it) and then iterate using (07.05). The problem with this is that the larger \(y\) is, the more important it is to have a good initial value for \(x\). The reader can test this for himself.

Another method is to use Euler's Sequence (see chapter 02) but with a modificaton: Euler's sequence is valid for \(1 / e^{\wedge} e<=1 / y<=1 / e^{\wedge}(1 / e)\). This limits us to compute coupled roots for \(1<=y<=15 .+\) which is not very useful. The one change is to compute a geometric mean between successive passes. So instead of (in pseudo-BASIC),
```

PRINT "EULER METHOD OF COUPLED ROOTS"
INPUT Y
Z=1/Y
A=Z^Z
FOR I=1 TO large_number
A=Z^A
NEXT I
ANS=1/A
PRINT ANS
END

```

We use,
```

INPUT Y
Z=1/Y
A=Z^Z
FOR I=1 TO large_number
B=Z^A
A=SQRT (A*B)
NEXT I
ANS=1/A
PRINT ANS
END

```

This broke the Euler "barrier" and provided a method of computing coupled roots. The main problem was now speed of convergence. This idea of using a geometric mean was found to be useful so a notation was invented to aid in manipulating this.

\section*{THE "XI"-OPERATOR}

The Xi operator is a notation used for describing the forgoing algorithm. Because of the SQRT() step, the Xi notation can only be used for equations that have a positive root. The reason for "Xi" is that it is the Greek letter for \(X\) and is used much like Sigma (summation) and

Capital Pi (for products). The general form is,
\[
\begin{equation*}
y=f(x), \tag{07.06}
\end{equation*}
\]
\[
\begin{align*}
& \text { inf } \\
& x=---\quad g(z)  \tag{07.07}\\
& \text { z=a }
\end{align*}
\]

The " \(z=a\) " means to start with an initial value of \(a\). The number on top of the Xi tells the number of times to iterate. The \(\mathrm{g}(\mathrm{z})\) is a function of both \(x\) and \(y\). An example would make this clear. Using (07.05) we have,
\[
\begin{align*}
& y=x^{x} \\
& y^{1 / x}=x \tag{07.08}
\end{align*}
\]
inf
\(x=\underset{\substack{------z=1}}{ } y^{\wedge}(1 / z)=\operatorname{crt}(y)\)
Another example would be the solution of \(x=\cos (x)\). This is already written in iterative form and has a solution in \(0<x<1\).
\[
\begin{align*}
& \text { inf } \\
& x=--\quad \cos (z)=0.7390851332 \ldots  \tag{07.11}\\
& \mathrm{z}=0
\end{align*}
\]

When one wants to write an equation in iterative form, it is best to use the most "powerful" inverse as this will aid in convergence. Solve,
\[
\begin{equation*}
\operatorname{cxt}\left(e^{\wedge} x\right)=1+\cos (x) \tag{07.12}
\end{equation*}
\]

For \(x=0, \operatorname{cxt}\left(e^{\wedge} x\right)=1,1+\cos (x)=2\). This means LHS < RHS. For \(x=1, \operatorname{cxt}\left(e^{\wedge} x\right)=15.15 \ldots, 1+\cos (x)=1.54 \quad\) This means LHS > RHS. So a solution exists \(0<x<1\). We can write ( 07.12 ) as either,
\[
\begin{align*}
& x= \arccos \left[\operatorname{cxt}\left(e^{\wedge} x\right)-1\right]  \tag{07.13}\\
&---\operatorname{or}--- \\
& x=\ln \{\operatorname{crt}[1+\cos (x)]\} \tag{07.14}
\end{align*}
\]

We chose (07.14) because of the combined effect of the natural logarithm and coupled root. Our solution is,
\[
\begin{equation*}
x=\underset{\substack{\inf \\----------z=0}}{\substack{ \\z=0}} \ln \{\operatorname{crt}[1+\cos (z)]\}=0.4239850757 \ldots \tag{07.15}
\end{equation*}
\]

The Xi operator has, at best, linear convergence. It is, however, very robust and compact. For 1979-1981 era programmable calculators with their 128 -step to 512-step memories, this space efficiency is important.

\section*{WEXZAL CALCULATIONS}

Computing coupled roots via Euler's method (for the limited range) or the Xi operator on a programmable calculator pose one problem: The biggest number that we can obtain the coupled root of is \(10 \wedge 100\) which is just under 57.
\[
\begin{equation*}
\operatorname{crt}\left(10^{\wedge} 100\right)=56.96124843 \ldots \tag{07.16}
\end{equation*}
\]

This range was too limiting for use in investigating the quasi-logarithmic behavior of coupled roots (See chapter 06). Wexzals (See chapter 03) were defined to "walk-around" this limitation. Since Wexzals are really just coupled roots of big numbers, a method of calculating them that was robust (did not care too much about starting values) and compact was needed. Using the Xi operator we have,
\[
\begin{align*}
& \text { inf } \\
& \text {------ } \quad x \\
& \text { wzl }(x)=---\quad----- \text { for } x>2 \text {, }  \tag{07.17}\\
& \begin{array}{c}
\substack{------z=2}
\end{array} \log (z)
\end{align*}
\]

Why \(z=2\) ? We want to get as close to zero as possible but still be able to compute Wexzals of large numbers.

This simple act enables one to compute coupled roots of numbers too large to store in a programmable calculator. (07.16) reduces to,
\[
\begin{equation*}
\operatorname{crt}\left(10^{\wedge} 100\right)=w z 7(100)=56.96124843 \ldots \tag{07.18}
\end{equation*}
\]

One can now go up to wzl \(\left(10^{\wedge} 100\right)=1.020317217 \mathrm{E}+98\)

\section*{SPEED-UP OF WEXZAL CALCULATIONS}

The Xi operator is robust but slow in convergence. This slow speed is fine if time is not an issue or if only a few values are needed. To be able to compute many Wexzals for calculations, such as for numerical integration, higher efficiency was required.

One of the best known numerical methods for solving equations is the "Newton-Raphson" method. That is,
\[
\begin{align*}
& f(x)-y=0  \tag{07.19}\\
& x=x-(f(x)-y) / s \quad \text { where } s=\begin{array}{l}
d f \\
d x
\end{array}
\end{align*}
\]

Like the Xi operator, an initial value of \(x\) must be chosen. Here is where the problem lies. The Newton-Raphson method is quadratic convergent which means for each iteration the number of correct digits doubles. This is "wunderbar" except the method is very sensitive to the initial value of \(x\). If the initial value for \(x\) is too far from the root of the equation, the method will diverge. So the question is: How do we automate the selection of the initial value for \(x\) when computing Wexzals? The solution for this lies in using an approximation method devised to enable one to compute Wexzals on small non-programmable calculators.

The Wexzal was defined in February of 1981. The asymptotic property (See chapter 03) was discovered and proved later that month. The following month, a method was devised for approximating Wexzals over a small interval by use of a 4-banger calculator that could compute square roots. Such machines were very cheap (\$10) and in common use. This method was also very fast when high accuracy was not needed. This is how the method was
derived: When one plots the Wexzal function over the interval [0,10], it looks something like SQRT(x) in that its rate of increase slows down. Maybe the Wexzal can be represented by a sum of square roots or something to that effect. We try,
\[
\begin{array}{r}
w z l(x)=a^{*} x+b^{\star} \operatorname{sqrt}(x)+c^{*} x^{\wedge}(1 / 4)+d^{\star} x^{\wedge}(1 / 8) \\
\text { for } x \text { in }[p, q] \tag{07.21}
\end{array}
\]

There is nothing special about using 4 terms, the initial idea was tested with the first two terms. We then select the interval to be [1, number_of_terms] or in this case [1,4]. To compute the coefficients, [a,b,c,d] we solve a \(4 \times 4\) system of equations. A PDP-10 computer with BASIC was used for calculating the solution of the following system:
\begin{tabular}{|c|c|c|c|c|}
\hline \(1 \operatorname{sqrt}(1) 1^{\wedge}(1 / 4) 1^{\wedge}(1 / 8)\) & & a & & wzl (1) \\
\hline 2 sqrt(2) \(\mathbf{2}^{\wedge}(1 / 4) 2^{\wedge}(1 / 8)\) & & b & & wz1(2) \\
\hline \(3 \operatorname{sqrt}(3) 3^{\wedge}(1 / 4) 3^{\wedge}(1 / 8)\) & & & & wzl (3) \\
\hline \(4 \operatorname{sqrt}(4) 4^{\wedge}(1 / 4) 4^{\wedge}(1 / 8)\) & & & & wzl (4) \\
\hline
\end{tabular}

For this we get,
\[
\begin{align*}
& a=+0.347487883 \\
& b=+3.180799039  \tag{07.23}\\
& c=-4.877526987 \\
& d=+3.855424212
\end{align*}
\]

Today, this calculation can be made on any calculator with built-in matrix calculations such as a Casio fx-7700G.

Letting \(g(x)=a^{*} x+b^{*} \operatorname{sqrt}(x)+c^{*} x^{\wedge}(1 / 4)+d^{*} x^{\wedge}(1 / 8)\) we compute the Root Mean Square (RMS) over the interval [1,4],

Which is not bad for a simple expression that allows one to compute coupled roots in [10,10^4].

Experimentation with (07.21) shows that this approximation does not "fall-apart" until \(x\) is around 15 . For \(x>15\) we can use the (crude) approximation \(\mathrm{wzl}(x)=x / \log (x)\). For \(x\) in \([0,1)\) we use the Taylor series,
\[
\begin{equation*}
w z 1(x)=1+x / m+\ldots \tag{07.25}
\end{equation*}
\]

So a complete algorithm would be the following:
```

REM To compute wzl(x) for a given }
m=LOG(e^1)
IF 0<=x<1 THEN LET y = 1 + x/m
IF 1<=x<=15 THEN LET y = a* x + b*SQRT (x) + c**^^(1/4) + d* *^(1/8)
IF x>15 THEN LET y = x/LOG(x)
FOR I=1 T0 16
z=LOG(y)
y=y-(y*z-x)/(m+z)
NEXT I
RETURN y
END

```

A minor variation of this is currently used for calculating the values of the Wexzal function. This algorithm is fast, compact and simple to understand and implement.

\section*{WEXZALS OF COMPLEX NUMBERS}

Wexzals of complex numbers (and reals that are \(<0\) ) can be computed in the same manner except one needs to use \(A B S(x)\) in \(p l\) ace of \(x\). With this, one will obtain values that are in the complex plane. Examples:
```

wzl(-1) = crt(0.1) = -0.2063655338 - 1.299526203*j
wzl(-2) = crt(0.01) = -0.8152336827-2.031576410*j

```

The equation,
\[
\begin{equation*}
x=\log (x) \tag{07.27}
\end{equation*}
\]
has the solution,

1
\[
\begin{equation*}
x=-----=-0.1191930734+0.7505832939 *_{i} \tag{07.28}
\end{equation*}
\]

\section*{A GEOMETRIC METHOD}

Wexzals of positive numbers can be obtained via graphical means by plotting on a linear graph the two equations \(y=10 g(x)\) and \(y=k / x\) where \(k>0\). The point where they intersect is \((w z l(k), k / w z l(k))\). This is simple as the logarithmic graph is "standardized" and only the value of \(k\) need be varied.

\section*{WEXZALS ON A SLIDE RULE}

Slide rules have become "hot" collector's items in recent years. In spite of the digital "juggernaut", slide rules have a charm of their own that refuses to die. This we think is due to the user being able to develop a "feel" for the numbers and their relationships as expressed in the different scales. Some experts can mentally perform calculations in their heads by imagining a slide rule in operation.

A slide rule looks like a fancy ruler and has three parts: The body which is the main part; a slide which is the center bar that moves within the body and the cursor which is the clear indicator with a vertical hairline. There were many different types made such as circular models and Deci-Trig models by Keuffel \& Esser (K\&E). The most common type is the Mannheim \{07.06\} which has all 9 scales on one side. The other side has conversion factors and other mathematical/physics reference information. We do not intend this to be an introduction into slide rule operation. For that, a public library that still stocks "old" books will have books on slide rules. They can be located in the mathematics/physics section. A retired engineer or scientist who has ended his career before 1975 \{07.07\} can be of great assistance.

Wexzals can be calculated on a slide rule provided the L scale and CI scale are on the body and slide and the L scale runs from left to right. Some L scales run from 1 to 0 instead of the (more common) 0 to 1 . The basic idea is to find where CI and \(L\) have the same value for a given slide setting. This common value will be log[wzl(x)]. As an example, to compute wzl(1) we have the slide rule "closed" (The "1" on the C and D scales are over each other) and move the cursor from left to right and at the same time looking to see where the value on the CI scale and \(L\) scale will be the same. It is at 0.399 If the cursor is to the left then the value on the \(L\) scale will be less than the CI scale. If the cursor is to the right of 0.399 , the value of \(L\) will be greater then CI. Look at the value on the D scale for the final answer. It will be about 2.51, this is wzl(1). To compute wzl(2), we move
the left hand "1" of the C scale over 2.0 on D and repeat the same process. The answer is \(w z 1(2) \sim 3.6\). This is fine for \(x\) in \([1,10]\) but how do we compute higher wexzals? The CI scale can represent any number; not just numbers in \([0,1]\) like the L scale. We multiply CI by the correct power of 10 and by using the fractional part of CI we make the same test against the \(L\) scale. For example, to compute \(\mathrm{wzl}(20)\), we know it is around 15 or 16 (use the crude approximation \(\operatorname{wzl}(x) \sim x / \log (x))\) so we move the right 1 of \(C\) over the 2.0 on D and now CI represents numbers running from 1 to 10 as \(\log [w z 1(20)]>1\). Using the fractional part, \(L\) and CI meet at 0.216 on \(L\). The CI reads 1.216 but the 1 tells us to multiply the answer by \(10^{\wedge} 1\). The \(D\) scale says 1.64 which when multipled by \(10^{\wedge} 1\) gives 16.4 which is wzl(20). As a final example, compute wzl(4000). Well... 4000/log(4000) \(=4000 / 3.6 \sim 1100=>10 g[w z 1(4000)]\) is over 3.0 so we know that the power of 10 to multiply by will be 3 . Move the right 1 of \(C\) over the 4 on \(D\) and scan between the 3.0 and 4.0 on CI. The CI and L meet at 0.11 on L. Read 1.28 on D. The final answer is 1290 . The actual full answer is \(\operatorname{wzl}(4000)=1286.428\) By playing with this, the reader can determine how to compute wexzals of very small numbers. Hint: Use the asymptotic expression \(w z 1(1 / x) \sim 1+1 /\left(m^{\star} x\right)\).

\section*{CONCLUSION}

This chapter showed the development of the methods used to compute numeric values for the coupled root and Wexzal function. A brief overview of the history (and authors experiences with) of calculators and early home computers was also presented. Numeric calculation was central to early Wexzal research. This is why much effort was directed towards this end. By 1983, a least-squares method involving Wexzals was developed. This involved hundreds of Wexzals being computed per problem so efficiency was of upmost importance.
07.01 :
"Reverse Polish Notation" (RPN) is not a joke; it is a modification of a notation invented by an 18th century Polish mathematician. His notation uses prefix operators whereas RPN uses postfix notation. A brief example would be,
\[
X+Y * Z=X Y Z *+
\]
where the numbers are "pushed" onto a stack and then popped as each function is performed.

Hewlett-Packard uses this system on their calculators. It has the advantages of giving the user great control over the state of the calculator. Short-cuts can sometimes be effected by "rolling" or swapping numbers on the stack. All of the pre-HP-48 machines have a 4 -level stack. Note that these machines do not have an "=" key. HP calculators enjoy a very high reputation due their workmanship and excellent support from Hewlett-Packard. Critics and many beginners find the machines over-priced and difficult to use.

Casio, Sharp and TI use what is called "Algebraic Operating System" (AOS). This is the familiar system where one enters a calculation the exact same way as one would write it. So our example would just be
\[
X+Y * Z=
\]
and upon pressing the "=" key, the answer would appear. AOS calculators really convert their internal calculations into RPN before performing the calculation. This is how the calculator "knows" to perform multiplication before addition. This is why there is a limit to the number of embedded expressions (formulas in ()) allowed. Try hitting the "(" too many times and the machine will lock-up or give an error indication. AOS is easier for beginners to master. Casio calculators enjoy a following also due to their ease of use, speed, innovation (they were first with a graphics
model) and low cost. Calculators from the "big-4" (Sharp, TI, Casio and HP) are all very reliable and give the user cost-effective computing ability.

\subsection*{07.02:}

LINPACK is a FORTRAN linear algebra benchmark written at Oakridge National Labs. It is used to measure the arithmetic (add, subtract, multiply and divide) speed of computers. Matrix calculations are required to solve dynamic problems in nuclear physics. This benchmark has been used to measure the speed of machines from PC's to CRAY supercomputers. There are two problem-set sizes: \(100 \times 100\) and \(1000 \times 1000\) matrices of 64 -bit (DOUBLE PRECISION) numbers. The larger problem is used to measure the efficiency of vectors on supercomputers such as the Cray YMP-C90.

Benchmarking is a tricky subject in that there are many different ways to benchmark a machine and tests can be arranged as to make the machine of your choice win. Industry standard benchmarks such as SPEC, AIM, LINPACK, etc are attempts by major computer vendors to give objective "horsepower ratings" of their machines. The best (and standard) answer to the question "which machine is best?" is to run a sample program that represents the type of work the machine is intended for. Use the results of that to make an evaluation.

With the rise of RISC processors such as the DEC 21164, MIPS-8000, etc come the fact that for these processors, the quality of the compiler used to generate machine code is very important. The compiler must generate efficient code that takes full advantage of the features of the processor like multi-piplines, caching, etc. Both the processor and compiler need to be viewed as an integrated system.
07.03:

The PDP-10 is one of the most beloved and famous of the DEC mainframe line. It appeared in 1969, ran the TOPS-10 (Total OPerating System 10) operating system and had a 36 -bit word. It was one of the first machines to use timesharing on a wide scale. Schools, universities and government labs had these easy to use systems. PDP-10s supported BASIC, MACRO (DEC assembler) FORTRAN and COBOL. Being a "word" machine, it was most efficient running MACRO and FORTRAN.

TOPS-10 had the "feel" of OpenVMS that currently runs on VAXes and Alpha AXP systems. The designers of MS-DOS used many of the features of TOPS-10. Users logged onto a PDP-10 much the same way that one does on a VAX except a Project Programmer Number (PPN) is entered instead of a username. The PPN is a pair of three digit octal numbers that is used to identify the "group" and user id of each user. This is where the VAX UIC (User ID Code) came from. Each user ran in timesharing mode and was allocated (at most) 1 MB of core (yes... the machine had actual magnetic core elements) for his process. All of the major subsystems had processors on them to free the CPU to perform the "important" work. The PDP-10 was front-ended by a PDP-11 which communicated with the terminals. A11 of this made for efficient timesharing. TOPS-10 was a very solid operating system that had one of the most advanced scheduling algorithms in use.

In terms of raw arithmetic speed in DOUBLE PRECISION (72-bits), a PDP-10 (with the KL-10 processor - the fastest and last of the series) rates about 0.4 MFLOPS which is around the same performance of a modern Inte1 386DX-33 based PC. By 1970 standards, this made the PDP-10 a "sma11" mainframe. An average PDP-10 system cost \(\$ 500,000\) (1970's dollars). The "big-boys" were the IBM-370/168 and CDC-6600 machines. These big machines were more for batch processing in large business (IBM) or scientific (CDC) sites. The PDP-10's main strength lies in its ease of use. High school students could use the PDP-10 with little problem. IBM's JCL language, as used on the IBM-360 and IBM-370 series, was very difficult to master. IBM tried to make their own timesharing operating system called TSO which never achieved the popularity of TOPS-10.

DEC's last entry in the mainframe world was the DECsystem 20. This machine was really a PDP-10 with a new operating system called TOPS-20
and instead of core memory it had solid-state memory. TOPS-20 is a major upgrade on TOPS-10. It had sub-directories, usernames (no more PPN's) and a feature that when the user would type part of a command (or filename) and then strike the ESC key, the system would (if it could) finish typing the rest of the command or filename. This made for a system that could be best described, from a user's point of view, as "silky-smooth". The largest machine of this series was the DECsystem 2080 which had over 2 million words (36-bit) of memory. The VAX-11/780 in late 1977 lead to the demise of these mainframes as DEC wanted to be a one computer "family" (VAX) company. The VAX used the best ideas from the PDP-11 (DEC's 16-bit mini) and the PDP-10. Today (1995) the VAX is on it's last legs as DEC has moved on with the Alpha AXP family. This 64-bit system family is one of the fastest non-supercomputer systems to be had today.

Both authors learned computing in high school on a PDP-10 in the mid 1970's and enjoyed the experience. Early coupled root tables were generated on a PDP-10 in BASIC and FORTRAN.
07.04:

DOOM and WOLFENSTEIN3D are two very popular computer games that have earned awards due to innovative use of 3-D computer graphics. Un7ike the 2-D format of PACMAN, Wolfenstein 3-D places the player in a dark German castle in Germany during WWII. The view is exactly like what one would see in real life (perspective). In the view, the player sees a hand holding a weapon such as a dagger, P-38 pistol, a 9-mm Schmeisser machine-pistol or an 8 -mm machine gun. On computers with multi-media (soundcard) the sound effects are so real, the player really feels like he is in the middle of WWII. Music is used to add to the "atmosphere". It is clear that the creators at ID Software did their homework in researching this game as the opening march is "Horst Wessellied" which was the offical Nazi march of that era.

The player tries to move his character from floor to floor to escape German solders, SS guards, etc. When encountered they yell "Achtung! Halt! Schuezstaffel!" before they start shooting. All of this action in the game require great computing and graphic power. Many of the scenes used are pre-computed but when the character moves down a hallway it is clear that computational power is needed to render the scene based on character movement. An interesting observation is that all dead solders, guards, etc lie on the ground with their feet pointing to the player irrespective of the player's location. One can shoot a solder, see him fall so his feet are seen. The player can walk past him then turn around to look back on him and see that the feet are still pointing towards him.

DOOM is like Wolfenstein3D except it takes place on Mars sometime in the early 21 century and the player fights demons and monsters instead. The action is much more intense and the player can jump stairs, walls, etc and shoot at different elevations. DOOM is really a major upgrade on Wolfenstein3D.

Both these games make great demands on the graphic subsystems on PCs. Graphics cards (sometimes called Graphics Accelerators) are cards that contain a processor to handle graphics displays. This frees the CPU to perform the "important" calculations and let the graphics card handle the details of graphics. This, in essence, turns a PC into a baby-mainframe in that subsystems are "intellegent" enough to handle the details of their own operation with little intervention by the CPU. Realtime Multi-media is the driving force behind the demand for more powerful CPU's and graphic subsystems. The real goal is true Virtual Reality where one can simulate (in true 3-D) any situation they wish. It would not surprise the authors to see vector-processor graphics cards. A VGA display is a grid of pixels \(640 \times 480\) which if represented by a \(640 \times 480\) matrix would be ideal for a Cray-like vector processor. Such a system could perform in the hundreds of MFLOPS and be used for true realtime graphics rendering.

Vector registers enable machines like the Cray YMP-C90 and NEC SX-3 to perform calculations on an array of numbers in the same manner as scalar calculation (one number at a time). Thus a cross product calculation (used in matrix multiplication) can be done in just slightly more time (allowing for overhead) than a scalar multiplication. It is this vector ability that give Crays and other supercomputers their impressive speed ratings. When forced to calculate in scalar mode, their speeds are not that much better than a high-end workstation. Most computing experts would agree that for cost effective scalar computing, it is better to use a machine like a DEC ALPHA 7700 AXP or SGI PowerOnyx workstation.

\subsection*{07.06:}

Andre Mannheim was an officer in the French Army during the early 1800s under Napoleon. Napoleon liked mathematicans and mathematics and though mathematics useful. Mannheim was assigned the task of standardizing all aspects of French artillery. Artillerymen need to make quick calculations in the field (correct firing angles, etc.). Mannheim standardized the slide rule for use in the French Army. This is one of the first cases of a "Mil-spec" being given for a non-weapon item within an army. Mannheim's slide rule has 9 scales ( \(S, K, A, B, C I, C, D, L, T\) ) on one side and reference information on the other side. This gives the user the ability to multiply and divide, compute square and cube roots, Sines and Tangents, Reciprocals and logarithms.

Today, the American Army has standards for laptop computers and computer 1 anguages. The best known of this is Ada-83 which is MIL-STD-1815A. The goal in both cases is the same: to enable the army to use a standardized item so a large number of men can use it and logistics (support) is simplified as much as possible.

\subsection*{07.07:}

To show how quickly slide rules have been displaced by calculators the following is a true story. In 1981, one of the authors, while attending the university, left a plastic slide rule in the Computer Center early in the morning by mistake. After a day of classes, he was surprised to find it exactly where he left it. This was in an era where calculators (even 4-bangers) "grew legs and walked".

\section*{Chapter 08}

\section*{Misc Items Involving Wexzals}

\section*{INTRODUCTION}

The following are topics that wrap-up "loose ends" involving the Wexzal function. They range from interesting open questions down to "trivia".

\section*{CONVERGENCE PROPERTY}

In Spring 1981 it was discovered that we define the iterated Wexzal as,

0
\[
\begin{equation*}
w z\rceil(x)=x \tag{08.01}
\end{equation*}
\]

1
\(w z 1(x)=w z 1(x)\)

2
\(w z\rceil(x)=w Z 1[w z\rceil(x)]\)

3
\[
\begin{equation*}
w z 1(x)=w z 1\{w z 1[w z 1(x)]\} \tag{08.04}
\end{equation*}
\]

We get the following result,
```

 n
 lim wzl(x)=10 for all x in complex plane (08.05)
 n->inf

```

This says that for any value of \(x\) in the complex plane, the iterated Wexzal values converge to 10 . Not much has been done with this fact. An interesting graph is the plot of
inf
```

f(x) = > {[WZ\(x)-10]} for 0}<=x<=1
/

n=1

```

Some values are:
\begin{tabular}{cc}
\(x\) & \(f(x)\) \\
0.000000000 & -.4575750228 \\
1.000000000 & .7906822176 \\
2.000000000 & .2223556430 \\
3.000000000 & .0171801656 \\
4.000000000 & .0415736557 \\
5.000000000 & .1260693227 \\
6.000000000 & .1871547521 \\
7.000000000 & .2219561372
\end{tabular}
```

 8.000000000 . 2907658270
 9.000000000 . 5018692795
 10.00000000
1.000000000

```

It was hoped that some kind of a series could be developed from (08.06) but it was not met with much success.

\section*{Chapter 09}

\section*{Curve-fitting with the Wexzal}

\section*{INTRODUCTION}

Most early research efforts into the properties of the Wexzal function were focused on the basic theory of the Wexzal and Coupled Root functions. This included integrals (chapter 05), solving equations in closed form (chapter 04), etc. Nevertheless, there was the nagging question of "can this stuff be applied? If so, how?". The Wexzal function is interesting in of itself but there was yet the need to make it "useful". In April 1983 an interesting question arose which fuelled the need to develop a fast efficient non-linear curve-fitting algorithm that involved the Wexzal function.

\section*{MODELING}

Applied mathematicians "earn their keep" by working as mathematical modelers for industry, government, etc. One hears and reads about the latest model for how the universe was created or how an economic system works. Exactly what is mathematical modeling?

Mathematical modeling is the act of using mathematics (formulae) to describe some activity in the physical world. By use of formulae, mathematicians hope to not only describe the activity under investigation but to make predictions about that activity via the formulae. The most difficult part of modeling is outlining the assumptions and limitations of the model. If these are understood, then one can use the model with some measure of confidence. Models are best used in situations where one either: cannot directly observe the activity (e.g. creation of universe) or would be a danger to get involved directly with the activity until it is better understood. The best examples of models that are examined before the dangerous activity is undertaken is in the field of drug research and flight simulation.

When a drug company develops a new drug, they model it on a computer. The basic behaviors of the human body are programmed into the computer and the properties of the new drug are then entered. Based on mathematical laws about the human body and the drug, the computer can predict the body's reaction to the drug. Assumptions and limitations on all of the models are carefully checked. Once it appears the drug will work, only then will the drug company test it on lab animals before testing it on humans.

An example is in the field of aircraft design. Flight simulation models are used to help design new airplanes. These same models are used in flight simulators used to train pilots. Here the goal is to accurately mimic an actual airplane. Dispite the impressive sights, sounds and reactions of modern flight simulators, many pilots place little faith in these devices because the limitations and assumptions of the simulator are not always spelled out. There are many stories of Air Force pilots training on simulators (to learn a dangerous maneuver) only to find that the actual airplane, when flown over 50,000 feet, does not fly like the simulator. This difference could be caused by incorrect/missing numerical data for that flight altitude. In spite of that, simulators and other modeling devices save money, time and (most important) lives.

The models we are concerned with here are much simpler than a flight simulator. We are attempting to describe an event or action with a formula
that has one or more parameters. These parameters are used to control the behavior of the basic formula.

The first part of modeling is to decide on the form of the formula(e) to be used. This is based on either known physical laws (e.g. Gravity law) or it could be a "best guess" by the modeler. In this case, the modeler uses the formula to make predictions about the activity under investigation. Experiments are performed (if possible) to validate the model and to find the conditions where the model is not valid.

In most physics textbooks there is a discussion on falling objects. The acceleration of all falling objects is constant. For the model,
\[
\begin{align*}
& v=k * t, \quad \text { where } v=v e l o c i t y, ~ k=a c c e l e r a t i o n, ~ t=t i m e ~  \tag{09.01}\\
& x=1 / 2 * k * t \wedge 2, ~ w h e r e ~ x=d i s t a n c e ~ \tag{09.02}
\end{align*}
\]
one finds that this model is true if air resistance is removed. For experiments in air, this model would not be valid as a cannon ball will fall faster than a feather due to air drag. In a vacuum, this model would be valid. Once the limitations have been noted, these formulae can be manipulated to give "new" facts about falling objects. A very simple example is computing,
\[
\begin{align*}
& d v \\
& --=k  \tag{09.03}\\
& d t
\end{align*}
\]

This says that the acceleration is constant. Experiments can be performed to aid in calculating this value.

\section*{CURVE-FITTING}

Many times, a modeler has the basic formulae for the model but lacks needed parameters (such as ' \(k\) ' in (09.01)). This is in contrast to most of applied mathematics where the formulae themselves are unknown. The best known way to obtain the value of the needed parameters when given the formulae and a set of observations is to perform a calculation known as "Curve-Fitting".

Curve-Fitting is the act of finding values for the parameters in a formulae such that,
\[
\begin{equation*}
(f[x(i), a, b, c, \ldots]-y(i))^{\wedge} 2 \text { for } i=1,2, \ldots n \tag{09.04}
\end{equation*}
\]
is as small as possible. Note that a square quantity is used. If this difference is zero for \(i=1,2, \ldots n\) then the formula matches the readings [x(i),y(i)] exactly. Most of the time, this does not occur.

Many equations can be reduced to linear form. A linear equation is in the form of,
\[
\begin{equation*}
y(i)=A * x(i)+B \quad \text { where } A, B \text { are unknown constants } \tag{09.05}
\end{equation*}
\]

Most curve-fitting problems involve equations that can be placed in this form by simple transformation of the ( \(x, y\) ) data. The four main forms are:
\[
\begin{array}{ll}
y=A^{*} e^{B * x} & {[\text { Exponential - use }(x, \ln (y))]} \\
y=A^{*} x^{B} & {[\text { Power - use }(\log (x), \log (y)]} \\
y=A^{*} \log (x)+B & {[\text { Logarithmic - use }(\log (x), y)]} \\
y=A^{*} x+B & {[\text { Linear - use }(x, y)]}
\end{array}
\]

Scientific calculators (see chapter 07) have routines built-in to perform
linear curve-fitting. It is sometimes known as "Linear Regression".

\section*{NON-LINEAR FORM}

Equations that cannot be placed in the forms of (09.06) thru (09.09) are said to be of non-linear form. An example of this is,
```

 A
 y = ------
 B
 wz1(-)
 X
    ```

This equation arose from a study on the relationship between number of pumps on a pneumatic (pump-up) airgun and the muzzle velocity. Most airguns employing this power system are made by companies such as Daisy [09.01], Sheridan and Crosman. Most of these guns shoot 0.177 BBs (steel balls)

\section*{Chapter 10}

\section*{Graphs for Wexzal Calculations}

\section*{INTRODUCTION}

Graphs for used to display functional relationships between the independant variable(s) and the dependent variable. Along with the standard \(x-y\) linear graphs there are others such as Polar graphs. In most engineering/technology work, logarithmic plots are used.

\section*{LOGARITHMIC GRAPHS}

Logarithmic graphs are used in scientific/technical research for plotting experimental results or equations that involve logarithms. Logarithmic graphs are noted for having the sub-divisions on one or the other or both axes be logarithmic. A slide rule is divided the same way. The advantage of this is that data over a wide range can be plotted as each "count" along the logarithmic axis represents a 10 -fold increase in magnitude. Each count (power of 10) is called a "decade". Thus data such as distances ranging from atomic distances (order of \(1 \mathrm{E}-10 \mathrm{ft}\) ) upto intergalactic (order of \(1 \mathrm{E}+24 \mathrm{ft}\) ) distances can be plotted on the same graph. Each decade is of equal size so it is just as easy to read the data for (in our example) distances in the solar system ( \(1 \mathrm{E}+11\) upto \(1 \mathrm{E}+13 \mathrm{ft}\) ) as it is to read distances between cities ( \(1 \mathrm{E}+3\) thru \(1 \mathrm{E}+8 \mathrm{ft}\) ).

If one were to try to make such a plot using linear axis, he would find that the upper part of the scale would dominate as the axis would run from 0 to \(1 E+24\). If the axis were sub-divided into 1000 parts (this would make for a very fine-lined graph that would be hard on the eyes), each sub-division would represent \(1 \mathrm{E}+21\). Clearly the graph would be useless except for intersteller distances. Logarithmic graphs are useful but they also have some drawbacks.

If one knows the range of data to be plotted then the decade count can be made. However there is no "zero" on a logarithmic graph (along the logarithmic axis) as log(0) = -inf. One can select a very small number and let it go at that but what if the number selected is too large? E.g. In electronic control systems, engineers analyse systems based on frequency input. If the lowest frequency is lowered, then the graph must be re-plotted with the added decade. On the other end of the scale, the upper limit is bounded. One cannot plot "inf" on a logarithmic axis. There are ways to make axes that are non-linear and non-logarithmic that solve one or both these problems. This chapter presents two new types of graphs that solve both these problems and yet give new insight into the properties of the equation or data being plotted.

\section*{THE "FISH-EYE" GRAPH}

The Fish-eye graph (a.k.a. "Sk1ar" \(\{10.01\}\) graph) is a graph that uses (on x-axis or \(y\)-axis or both),

1
-------- = <location of \(x\) on axis>
wzl (1/x)
to generate the axis. Assume that the graph to be made is square that is 1 ft by 1 ft . This description will be for the \(x\)-axis as the \(y\)-axis would work the same way except it is vertical. Call the left-most x-coordinate " 0 ft " as it is \(0 \%\) of the travel to the end of the axis. Call the right-most \(x\)-coordinate " 1 ft " as it is \(100 \%\) of the travel on that coordinate. Now to label the axis we compute (10.01) for each point we want to label. We make a chart:
\begin{tabular}{|c|c|}
\hline Number 1 abel & Where to place on axis (ft) \\
\hline 0 & 0.0 \\
\hline 1 & 0.399 \\
\hline 2 & 0.538 \\
\hline 3 & 0.621 \\
\hline 4 & 0.677 \\
\hline 5 & 0.718 \\
\hline 6 & 0.750 \\
\hline 7 & 0.755 \\
\hline 8 & 0.795 \\
\hline 9 & 0.812 \\
\hline 10 & 0.827 \\
\hline 15 & 0.874 \\
\hline 20 & 0.901 \\
\hline 30 & 0.931 \\
\hline 50 & 0.957 \\
\hline 100 & 0.978 \\
\hline 1000 & 0.998 \\
\hline inf & 1.000 \\
\hline
\end{tabular}

When one starts to contruct a such a graph one sees how sparse the axis is for \(1,2,3\), as "1" is located at about \(40 \%\) of axis; "2" is about \(54 \%\) and " 10 " is about \(83 \%\). The labels start to bunch-up as " 100 " is about \(98 \%\) and " 1000 " is almost at the end. The appearence is that of a "distorted" logarithmic axis that somehow has "0" on it. The important thing to note is: Both 0 and infinity can be plotted at the sametime. This type of axis is called "Sklaric". There are many different ways to achieve the same goal of having 0 and infinity on the same axis, so why one based on (10.01)?

\section*{FIRST USE OF SKLAR GRAPHS}

When initial research was done on the question "what is the relationship between barrel length and muzzle velocity?" (see chapter 12) the first thing done was to plot on a semilogarithmic graph the barrel length in inches vs. muzzle velocity in ft/sec. The goal was to see if the plot would result in a straight line which would indicate that the relationship was logarithmic. A standard research technique is to take the data and plot it on four types of graphs: (1) \(x-y\) axis linear,
(2) x-axis logarithmic \(y\)-axis linear, (3) x-axis linear, \(y\)-axis logarithmic,
(4) \(x-y\) axis both logarithmic. One of these should result in a straight line. From that, the researcher can tell if the relationship is linear, logarithmic, exponental or power. Modern scientific calculators such as the Casio fx-7700G. Ti-85 and HP-48SX have this feature built-in so all the researcher need do is to have the calculator perform the four types of curve-fits (which are just logarithmic transforms of the linear case) and check for the best correlation coefficient.

When the following data, for a . 44 Magnum [10.01], was plotted, it was
observed that it was "almost" logarithmic.
\(\left|\begin{array}{cc}\text { Barrel lgn } & \text { Muzzle vel } \\ 2.0 & 935.0 \\ 3.0 & 1067.0 \\ 4.0 & 1165.0 \\ 5.0 & 1239.0 \\ 6.0 & 1298.0 \\ 8.0 & 1384.0 \\ 10.0 & 1445.0 \\ 12.0 & 1490.0 \\ 14.0 & 1525.0 \\ 16.0 & 1552.0 \\ 18.0 & 1575.0\end{array}\right|\)
(Fig. 10.02)
What is meant by "almost" logarithmic is the plot is a straight line except for the last few points which start to bend downward. This indicated that eventhough logarithms would give a reasonable approximation to the data, it was felt that a different type of function would give a better approximation. The rationale for using (10.01) for this problem is given in chapter 12.

If one draws a graph with the \(x\)-axis being sklaric and the \(y\)-axis being linear ranging from 0 to 1 and then draws a straight line from ( 0,0 ) to (inf,1), one has plotted \(y=1 / w z 1(1 / x)\). One can change the upper limit on the \(y\)-axis from 1 to a and then plot a straight line from \((0,0)\) to (inf,a). This would be the equation \(y=a / w z 1(1 / x)\).

When one plots the data from Fig 10.02 on a semi-sklaric graph (x-axis is sklaric; y-axis is linear) one observes the data is very close to being a straight line. A Wexzalic curve-fit of Fig. 10.02 in the form of
\[
\begin{align*}
& \mathrm{y}=-------  \tag{10.02}\\
& w z l(b / x)
\end{align*} \quad \text { where } a, b \text { are constants }
\]
gives,
\[
1779.692407
\]
\[
\begin{aligned}
y=-\cdots-\cdots-\cdots & \text { WZ1 }(1.1080842 / x)
\end{aligned}
\]

The \(b\) coefficient being "near" 1 explains the "straightness" of the curve.
One can obtain an approximate value for 'b' by observing the shape of the curve (of a sklaric function) on a semi-sklaric axis. By drawing a line from \((0,0)\) to (inf,a) and noting the behavior of the function in relation to the line. If the function arcs over the line that means the function is "accelerating" to the asymptotic value faster than a/wzl(1/x). This implies that:
\[
\begin{equation*}
\text { Function over line ==> } 0<b<1 \tag{10.04}
\end{equation*}
\]

The closer 'b' is to zero (from the right) the more of a step-function the function becomes. This is because,
\[
\begin{equation*}
a / w z l(0 / x)=a / w z l(0)=a / 1=a \tag{10.05}
\end{equation*}
\]

If the function curves under the line that means the function is slower than \(a / w z 1(1 / x)\) in going to the asymptotic value, 'a'.
Function under line ==> b>1

Examples of both cases include bullet acceleration inside of a gun (chapter 12) and automobile acceleration (chapter 13).

\section*{OTHER USES OF THE SKLAR GRAPH}

Un7ike logarithmic graphs that retain their "shape" regardless of the units used in the data (feet, miles, etc), Sklar graphs are not invariant in this respect. This at first looks like a draw-back but it can be used to advantage. By altering the units in the data one can make a graph that is easy to read and be useful in making complex calculations. An example of this is a Sklar graph for the equations used in solving the "car problem" (chapter 13).

\section*{A BETTER GRAPH FOR ASYMPTOTIC PLOTTING}

One can plot (on the same graph) both zero and infinity. This is useful for asymptotic studies but there is just one problem: It is difficult to read values above 1000. There is not much difference (distance wise) between 1000 and infinity. We then cannot see distinct values for \(x=10000,100000,1000000\), etc. There are many ways to solve this. If we give-up the ability to plot in the interval [0,1) then one way is to use,

\section*{1}

1------ = <location of \(x\) on axis> (10.07)
as the "generating" function. In chapter 02 it was pointed out that the coupled root function was "slower growing" than logarithms. We take advantage of this fact.
\begin{tabular}{|c|c|}
\hline Number label & Where to place on axis (ft) \\
\hline 1 & 0.000 \\
\hline 2 & 0.359 \\
\hline 3 & 0.452 \\
\hline 4 & 0.500 \\
\hline 5 & 0.530 \\
\hline 6 & 0.552 \\
\hline 7 & 0.568 \\
\hline 8 & 0.581 \\
\hline 9 & 0.592 \\
\hline 10 & 0.601 \\
\hline 100 & 0.722 \\
\hline 1000 & 0.780 \\
\hline 10000 & 0.816 \\
\hline 100000 & 0.841 \\
\hline 1000000 & 0.858 \\
\hline 10000000 & 0.872 \\
\hline 100000000 & 0.883 \\
\hline 1000000000 & 0.892 \\
\hline \(1 \mathrm{E}+10\) & 0.900 \\
\hline \(1 \mathrm{E}+20\) & 0.939 \\
\hline \(1 \mathrm{E}+50\) & 0.970 \\
\hline \(1 \mathrm{E}+100\) & 0.982 \\
\hline \(1 \mathrm{E}+200\) & 0.990 \\
\hline inf & 1.000 \\
\hline
\end{tabular}
(Fig. 10.03)
This graph is used for comparing asymptotic expansions against the actual function. An example of this would be,
\[
\begin{gather*}
x \\
w z l(x) \sim----- \tag{10.08}
\end{gather*}
\]
\(\log (x)\)
From this, one can quickly see that this asymptotic expansion is true.

\section*{CONCLUSION}

For functions that model a rapid rise to a steady-state, such as bullet accelerating down the barrel of a gun, the Sklaric graph is very useful. The main drawback is that the function,
\[
y=\begin{gather*}
1 \\
-------  \tag{10.09}\\
w z\rceil(1 / x)
\end{gather*}
\]
does not have "simple" properties like the function,
\[
y=1-e^{-x}
\]

Equation (10.10) is used in electronics to describe the charging of a circuit.

Equation (10.09) has infinite slope at \(x=0\) which means (10.09) cannot be expanded in a Tayler series around \(x=0\). This along with the invariance of scaling makes Sklar graphs less flexible than logarithmic graphs for most scientific work.

Sklar graphs are specialized graphs like Probibility graphs (for Normal Distribution) where they are used for specific applications. The best use for them to date is for bullet acceleration studies (chapter 12).

The second type of graph, based on Coupled Roots is most useful for numerical asymptotic study where numbers ranging from 1 to infinity need to be plotted.
10.01:

Professor Ronald Sklar was a Numerical Analysis professor at the State University of New York at 07d Westbury. One of the authors studied under him from January 1981 to December 1982.

A name was needed to describe the 'fish-eye' graphs. The graph is based on the Wexzal function but is not the Wexzal function itself. To call the graphs 'Wexzalic' would have caused confusion as 'Wexzalic' here means "involving the Wexzal function". This chapter discusses two types of Wexzalic graphs.

\section*{References for Chapter \#10}
(1) Milek, Bob "Barrel Length vs. Velocity"

From "Guns \& Ammo" page 46

\section*{Chapter 11}

\section*{Application of the Wexzal in Ballistics}

\section*{INTRODUCTION}

External ballistics concerns itself with the study of bullet flight from the time the bullet leaves the barrel of the gun until it reaches the target. Of major interest is the question of velocity decay. This is important to the shooter who wishes to know if the bullet has enough energy to destroy the target.

The measure of a bullet's resistance to velocity decay is called the "Ballistic Coefficient" and it is denoted by BC. It is a ratio of velocity decay between the bullet in question and a "standard" (reference) bullet. This standard bullet has a \(\mathrm{BC}=1.0\). The larger the \(B C\), the more efficient (more velocity at target for a given muzzle velocity) the bullet is. The \(B C\) is a function of the bullet's weight, its shape (or form) and the air density where the measurment is taken. The following table give examples of some \(B C\) values:
\begin{tabular}{|c|c|}
\hline Projectile (description) & BC \\
\hline & -- \\
\hline 0.177 cal pellet "Silver Sting" & \(0.0180\{11.01\}\) \\
\hline 0.22 Long Rifle bullet & \(0.10 \quad\{11.02\}\) \\
\hline "Average Hunting bullets" & 0.2-0.6 \\
\hline 8 mm sS bullet (198 grain) & 0.588 \{11.03\} \\
\hline 13 mm T-Gewehr bullet (811 grains) & 1.266 \{11.04\} \\
\hline
\end{tabular}
(Fig. 11.01)
In the U.S.A., the standard model is called the "G1" model. This was developed by the U.S. army around the time of World War I. Tables of this function can be found in most text books on ballistics [11.01]. The tables are of the form of \(v\) and G1(v) where ' \(v\) ' is velocity. It is this model (and notation) that will be used in this chapter.

Discussion of a bullet's BC is done mostly by "serious" reloaders. Reloading manuals [11.02] not only give loading data (amount/type of powder, type of brass \& primer and bullet shape/weight) but also the \(B C\) for each bullet made by that company. This aids the loader in determining downrange performance. Some manuals also contain tables containing the muzzle velocity, velocity at 100 yards, etc. An example is the following for a U.S. 30-06 "Accelerator" [11.03].

(Fig. 11.02)

The question becomes: What type of function is the velocity decay? Is it exponential? Hyperbolic, or linear? Is there a "simple" way to calculate the \(B C\) when given data in the form of fig 11.02? Can the flight time be quickly computed? What does the trajectory look like? The rest of this chapter addresses these questions.

\section*{VELOCITY DECAY}

In the book "Jagdballistik" (Ballistics for hunting) [11.04] velocity decay is given in the form of:
\[
v=\frac{a}{e^{\wedge}\left(b^{\star} x\right)}
\]
where ' \(v\) ' is velocity in metres/sec and \(x\) is in metres. The coefficients 'a' and 'b' are determined by curve-fitting. The larger 'b' is, the faster the velocity would decay. The 'a' coefficient is approximate to the muzzle velocity.

This simple formula has the advantage of being easy to integrate (to calculate flight time) and because it is an exponential, one can calculate the coefficients by first transforming the equation into the form of:
\[
\begin{equation*}
\ln (v)=\ln (a)-b * x \tag{11.02}
\end{equation*}
\]

Most scientific calculators have the ability to perform this type of curve-fit. (The calculator manuals might refer to this as "Linear Regression" as this is a statistical operation also). Using data from fig 11.02, we obtain,
\[
\begin{equation*}
v=4142.2328 / e^{\wedge}(1.73277 \mathrm{E}-3 * x), \quad \text { RMS }=36.267 \tag{11.03}
\end{equation*}
\]
where ' \(v\) ' is in ft/sec and ' \(x\) ' is in yards. The Root Mean Square is just a little over 36 ft/sec.

\section*{A BETTER DESCRIPTION OF VELOCITY DECAY}

Is there a model that better fits data like in fig 11.02? By "better" we mean having a lower RMS value. Using standard units let:
\(\mathrm{a}=\) "Asymptotic" velocity in ft/sec
\(\mathrm{b}=\) "Decay rate" in \(1 / \mathrm{ft}\)
\(\mathrm{x}=\) Distance in feet
\(\mathrm{v}=\) Velocity in ft/sec
\(\mathrm{t}=\) Flight time in seconds
\(\mathrm{k}=\) Mass of bullet in slugs ( \(32.2 \mathrm{lb}=1\) slug \()\)
\(\mathrm{s}=\) Scope height in feet
\(\mathrm{d}=\) Bullet drop in feet
\(\mathrm{y}=\) Height above line of sight in feet
\(\mathrm{E}=\) Firing angle in radians
\(\mathrm{z}=\) Distance to target in feet
\(\mathrm{g}=\) Acceleration due to gravity \(\left(32.2 \mathrm{ft} / \mathrm{sec}^{\wedge} 2\right)\)

Using (11.01) as a basis (as the exponential has the "right idea") we write:
a
\(\qquad\)
```

wzl[e^(b*x)]

```

Why "wrap" a Wexzal around the exponential part? For non-negative functions, the Wexzal "distorts" that function. For the simple case of \(f(x)=x\), the wexzal does the following:
```

wzl(x) > x for a11 x in [0,10)
wzl(x) = x at x=10
wzl(x) < x for all x > 10
WZ1 $(x)=x$ at $x=10$
wzl(x) < x for all $x>10$

```

This "bending" behavior has proven useful. Performing a non-linear curve-fit on fig. 11.02 using (11.04) leads to:
10205.916
```

v = --------------------, RMS = 7.406
wz1[e^(1.01929E-3*x)]

```

Note that the RMS is about 4.9 times smaller. The 'a' value is nearly equal to the muzzle velocity times wzl(1). This is a result of:
```

wzl(e^0) = wzl(1) = 2.506184146

```

Can we calculate the flight time of (11.04) in closed form?

\section*{COMPUTING FLIGHT TIME}

Knowing the flight time from muzzle to target is useful in that this information aids in calculating the correct "lead-angle" to give a moving target. If aimed correctly, both the projectile and target will arrive at the exact same location at the exact same time.

As the velocity is given as a function of distance this will result in a differential equation that can hopefully be solved in closed form. Here we use the term "closed form" to mean one can write a formula involving Wexzals and (if need be) other known higher functions \{11.05\} It is assumed that these functions are "easy" to calculate; no Runge-Kutta or Simpson's Rule needed. This reduces the need for computing power. For the shooter, this means that a programmable calculator is all that is needed to make the calculations; no powerful 486DX/33 laptop need be taken to the shooting range.

Writing (11.04) in differential form,
```

dx a
-- = v = ------------
dt wzl[e^(b*x)]

```
leads to the integral,


Removing constants, we have the form of the integral.

/ /
This integral can be written in closed form (see chapter 05) and the result is:
```

/
| WZl(z)
| ----- dz = wZ\(z) + ei{ln[wz\(z)]} + c
Z
/

```

From (11.11) \{11.06\} one obtains the flight time:
\[
\begin{align*}
& b^{*} x \\
& \text { /e } \\
& t=\begin{array}{c|c}
1 \\
---* \\
a * b & \text { wzl(u) } \\
/ 1
\end{array} \quad \begin{array}{c}
----d u
\end{array} \tag{11.12}
\end{align*}
\]

If we define \(B(u)\) to be,
\[
\begin{equation*}
B(u)=w z\rceil(u)+e i\{1 n[w z\rceil(u)]\} \tag{11.13}
\end{equation*}
\]
then the flight time can be written in standard form as,
```

 1
 t = --** {B[e^}(\mp@subsup{b}{}{*}x)]-B(1)
a*b

```
where \(B(1)=4.180218835 \ldots\)

Both \(B(u)\) and \(\left\{B\left(e^{\wedge} u\right)-B(1)\right\}\) will be tabulated in the appendix.

\section*{COMPUTING AVERAGE VELOCITY}

There is not much need to know the average velocity if one can compute the flight time exactly with little effort. However, if the average velocity value was needed, it too can be computed in closed form. Using (11.04) we obtain the average velocity as follows,


The integral,
```

1
| dz 1
| ------- = ------ - ei\{-ln[wz1(z)]\} +c
| $z^{* w z l(z) ~ w z l(z) ~}$
/

```
can be written in closed form. So the average velocity, v`, is:
```

 1
 Let P(u) = ----- - ei{-1n[wz1(u)]}
wzl(u)

```
\[
v^{\wedge}=\frac{a}{---*} *\left\{P(1)-P\left[e^{\wedge}\left(b^{*} x\right)\right]\right\}
\]
where \(P(1)=0.6508866537\). .

\section*{COMPUTING DRAG FORCE ON BULLET}

Once the bullet leaves the muzzle, it would be interesting to know how much air resistance the bullet experiences. This can be calculated as follows,
\[
\text { acceleration }=\begin{gather*}
d v  \tag{11.19}\\
-- \\
d t
\end{gather*}
\]

Using (11.04) we have,
\[
\begin{align*}
& -a * b * e^{\wedge}\left(b^{*} x\right) \\
& d v=-----------------------------d x^{d}  \tag{11.20}\\
& e^{\wedge}\left(b^{*} x\right) \\
& w z 1\left[e^{\wedge}\left(b^{*} x\right)\right]^{\wedge} 2 *\{m+----------\} \\
& w z 1\left[e^{\wedge}\left(b^{*} x\right)\right]
\end{align*}
\]
but \(d x=v * d t\) so we obtain as final result for the acceleration,
\[
\begin{aligned}
& d v \quad-a^{\wedge} 2 * b * e^{\wedge}\left(b^{*} x\right) \\
& \text {-- = ----------------------------------- } \\
& d t \quad e^{\wedge}\left(b^{*} x\right) \\
& \text { wz1 }\left[e^{\wedge}\left(b^{*} x\right)\right]^{\wedge} 3^{*}\{m+----------\} \\
& w z 1\left[e^{\wedge}\left(b^{*} x\right)\right]
\end{aligned}
\]

The drag force in pounds is then,
\[
f=k * \begin{align*}
& d v  \tag{11.22}\\
& -- \\
& d t
\end{align*}
\]

For a 198 grain bullet (8.78E-4 slugs) with \(\mathrm{BC}=0.5\) and a muzzle velocity of \(2600 \mathrm{ft} / \mathrm{sec}\) experiences a drag of 1.3342 pounds on muzzle exit. The acceleration is \(-1518.8 \mathrm{ft} / \mathrm{sec}^{\wedge} 2\) or about 47 G 's. No wonder some "cheap" bullets blow-up after exiting the muzzle! \{11.07\}

\section*{VELOCITY \& DISTANCE AS A FUNCTION OF TIME}

Upto this point the velocity and acceleration have been expressed as a function of distance. It would be useful if these equations could be written as a function of time as that is the way most mathematical models are written. Let us define,
\[
\begin{equation*}
x=B(y), \quad y=i n v B(x) \tag{11.23}
\end{equation*}
\]
where \(B(y)\) is the form given in (11.13). An interesting property of inv \(B(x)\) is that.

This result is obtained using the "derivative of inverse function" rule. What makes this interesting is that (when constants are stripped) the velocity decay problem boils down to a first degree differential equation involving the logarithm of the Wexzal. Taking equations (11.04) and (11.12) and rearranging to get them to be a function of time we get: For velocity,

\section*{a}
\[
\begin{align*}
v= & -----------------1 \text { - }  \tag{11.25}\\
& w z 1\{i n v B[a * b * t+B(1)]\}
\end{align*}
\]

For distance,
\[
x=\frac{1}{-} * \ln \{\operatorname{invB}[a * b * t+B(1)]\}
\]

The computation of invB(x) involves iteration. For quick "field" calculations, a series solution of (11.24) when given \(y(0)=1\)
(exact solution: \(y=i n v B[x+B(1)]\) ) is,
\[
\begin{equation*}
y=1+0.399 * x+0.041488 * x^{\wedge} 2-0.0011434 * x^{\wedge} 3+\ldots \tag{11.27}
\end{equation*}
\]

This can be used to get approximations for small values of \(x\). Using (11.27) in (11.25) \& (11.26), require that the term a*b*t be small.

\section*{HOW DOES THIS MODEL COMPARE TO "REAL-WORLD" DATA?}

Equations (11.04), (11.14) and (11.18) are very interesting to look at but how close are they at describing reality? For what velocity range and/or BC range are they valid for? From theorems from calculus, if the velocity equation is correct, then the flight-time equation must be correct also (provided the integral as stated is correct!). Because of this, all that needs to be verified is the velocity (11.04) equation. This was done as follows,

One of the authors used Vol II of [11.02] which gives velocity decay data along with the BC for every bullet that company makes. The data for bullets having muzzle velocities ranging from 1000 to 4000+ ft/sec and \(B C\) values ranging from 0.11 to 0.620 were entered into a laptop computer. A curve-fit "contest" was held comparing the exponential decay model (11.01) against the Wexzalic-exponential decay model (11.04). A FORTRAN program that calculated bullet flight via the G1 model was used also to generate data. This was used for extreme cases like a bullet having a muzzle velocity of \(4000 \mathrm{ft} / \mathrm{sec}\) with a \(\mathrm{BC}=0.0180\) which would describe an airgun pellet. The data from [11.02] and the G1 program were assumed to be "exact" i.e. the tabulated data was not curve-fitted with some unknown formula that would cause the tables to be biased toward one form (11.01 or 11.04) over another. As a further test, German tables from RWS (Rheinische-Westfaelische Sprengstoff Rheinland Explosive Works) and "Waffen Revue" were used.
The result of all of this calculation?
(1) The Wexzalic model provided a better fit provided that the muzzle velocity and impact velocity were >= \(1370 \mathrm{ft} / \mathrm{sec}\).
(2) The value of the ballistic coefficient made no difference on the outcome of which model was better. Only that the velocity made a difference; not the change in velocity (as dictated by the BC).

Why the "break" at \(1370 \mathrm{ft} / \mathrm{sec}\) ? We know from aerodynamics that the transonic range ( \(\sim 900-1300 \mathrm{ft} / \mathrm{sec}\) at sea level) produce great changes in drag. This is caused by changes in type of airflow around the body (airplane, bullet, etc) travelling thru the air. Another thing to consider is the following:

DECLARE FUNCTION bigg\# (x\#)
DECLARE FUNCTION g1\# (x\#)
DEFDBL A-Z
DEF fnlgt \((x)=\) LOG(x) / LOG(10\#)
CLS
CLEAR
\(v=2600 \#\)
\(\mathrm{g}=.588 \#\)
FOR \(y=0 \#\) T0 1000\#
\(f=y\) * \(3 \#\)
\(e=-f / g\)
\(\mathrm{t}=100\) \#
\(w=v-t\)
h = 10\# ^ 99
50 GOSUB 1000
\(j=\operatorname{ABS}(c-e)\)
IF \(j\) >= h THEN
GOTO 210
END IF
\(h=j\)
\(w=w-t\)
IF w > O\# THEN
GOTO 50
END IF
\(210 w=w+t\)
FOR j = 1 TO 10
GOSUB 1000
\(p=w\)
\(w=w-(c-e) * g 1(w)\)
NEXT j
PRINT USING " \#\#\#\#\#.\#\#"; y; w
NEXT y
END
1000 a \(=\) fnlgt \((v)\)
b = fnlgt(w)
\(k=8\)
\(n=k * \operatorname{FIX}(1 \#+\operatorname{ABS}(b-a))\)
\(d=(b-a) / n\)
\(u=(n-2) / 2\)
\(s=\operatorname{bigg}(a)+\operatorname{bigg}(b): a=a+d: s=s+4 \# * \operatorname{bigg}(a)\)
FOR \(q=1\) TO \(u: a=a+d: s=s+2 \# * \operatorname{bigg}(a)\)
\(a=a+d: s=s+4 \# * \operatorname{bigg}(a)\)
NEXT q
\(c=s * d / 3 \#\)
RETURN
FUNCTION bigg\# (x\#)
DEFDBL A-Z
\(p=10 \#^{\wedge} \times\)
bigg \(=\) LOG(10\#) * p / g1(p)
END FUNCTION
FUNCTION g1\# (x\#)
```

DEFDBL A-Z
IF x >= 2600\# THEN
GOTO 100
END IF
IF x >= 1800\# THEN
GOTO 200
END IF
IF x >= 1370\# THEN
GOTO 300
END IF
IF x >= 1230\# THEN
GOTO 400
END IF
IF x >= 970\# THEN
GOTO 500
END IF
IF x >= 790\# THEN
GOTO 600
END IF
r = 10\# ^ (5.66989 - 10\#) * x
GOTO 900
100 r = 10\# ^ (7.60905 - 10\#) * x^ .55\#:GOTO 900
200 r = 10\# ^ (7.0962 - 10\#) * x ^ .7\#:GOTO 900
300 r = 10\# ^ (6.11926 - 10\#) * x: GOTO 900
400 r = 10\# ^ (2.9809 - 10\#) * x ^ 2: GOTO 900
500 r = 10\# ^ (6.80187 - 20\#) * x ^ 4: GOTO 900
600 r = 10\# ^ (2.77344 - 10\#) * x ^ 2: GOTO 900
900 g1 = r
END FUNCTION

```
(Fig. 11.03)
Fig. 11.03 is a BASIC (actually QBASIC in DOS 5.0) program that uses the G1 model to compute the impact velocity when given muzzle velocity, range to target and the BC. In the function \(\mathrm{Gl}(\mathrm{x})\) where the "IF" statements are, the velocity ranges that are tested are >=2600 ft/sec, \(>=1800 \mathrm{ft} / \mathrm{sec},>=1370 \mathrm{ft} / \mathrm{sec}\), etc. Note the corresponding "R=" statements after the numbered program labels ( \(100,200,300\) etc). The equations are in the form of \(r=k^{*} x^{\wedge} y\) where \(k\) and \(y\) are constants. The values for \(k\) written in the form of \(10^{\wedge}(x . x x x x-10)\) is a very traditional way of writing antilogarithms of negative numbers. The three equations labelled ( \(100,200,300\) ) have y values of \((0.55,0.70,1.0)\) The first two equations are convex functions like the Wexzal. A convex function is one where if one were to draw a straight line from ( \(x 1, y 1\) ) to ( \(x 2, y 2\) ), where \(\{(x 1, y 1),((x 2, y 2)\}\) are points on \(f(x)\), the line would lie under the function curve. We think this property accounts for the excellent agreement with the Wexzalic model. All we are certain of is the Wexzalic model gives closer agreement with the G1 model for high velocity bullets. The exponential model does much better than the Wexzalic model for velocities less than \(1370 \mathrm{ft} / \mathrm{sec}\).

\section*{OBTAINING BC VALUE FROM VELOCITY DATA}

For velocities >=1370 ft/sec, how does one obtain the BC from a set of (distance, velocity) reading? This is important as shooters use the \(B C\) value in judging bullets for their use in hunting, target shooting etc.

One of the authors discovered that the \(B C\) is a linear function of
the muzzle velocity (V0) in ft/sec and the 'b' coefficient in (11.04). This was found as follows: A FORTRAN program was written that would generate, via the G1 model, tables for varying initial velocities and BC. This was as follows (in pseudo-code)
```

For v0=2000 to 4000 step 10
For BC=0.1 to 1.3 step 0.1
For Yards=0 to when_ever_computed_vel_got_<_1370 step 5
Compute velocity via G1 model using (BC,VO,Yards)
Store in array the values (Yards,velocity)
next Yards
Compute 'a','b' coeffs in (11.04) from this data and
store array(BC,1/b)
next BC
Now compute a linear fit in form of y`=b_coef * x` + a_coef
using (BC,1/b)
Write to external file the values (Vo,b_coef)
next vo
end

```

The values in the external are then linear curve-fitted to give the final form of the formula. The reason for using ( \(B C, 1 / b\) ) instead of ( \(B C, b\) ) is because we wanted the relationship to be monotonic increasing (as BC goes up, so does 1/b).

This program was run on a 486DX/33 laptop using a 32-bit FORTRAN. The runtime was over 6 hours. The final formula is:

1/b

This formula has been checked against tables and has been found to be at most 0.003 off from the actual BC value. This testing was done by selecting data that had a known \(B C\) and velocity values for \(0,100,200\) etc yards. From this the 'a', 'b' coefficients from (11.04) were computed. The BC was then computed from this and compared to the actual BC.

\section*{CONSTRUCTING A TRAJECTORY}

The basic components of a trajectory need to be defined before the formulae for the path of a bullet can be derived. When one looks down the sights of a gun (or telescope if the gun has one) at the target, this is called the "line of sight". The shooter makes the assumption that the projectile will travel in a straight line to the target; much like the path a laser beam would take. In reality, the path the projectile would take is parabolic-like (not an exact parabola due to wind resistance). On most guns, a telescope sight is about 1.5 inches above the barrel. For guns with "iron" sights (two metal "leaves" mounted on the barrel with notches on them) the sights are about 0.9 inches above the barrel. From this, one can see that the target is below the line of sight. To correct this, the barrel (relative to the line of sight) is pitched up at a small angle. This angle is adjustable by the shooter and that is what he does when he adjusts the sights so the gun (for a given bullet) will hit the target at a specified distance. Shooters call this "zeroing" their guns.

When a gun is fired, the bullet leaves the barrel and after a short distance, rises above the line of sight. At some point, the bullet will reach a maximum height above the line of sight. This is called the "maximum ordinate" or "max ord" for short. This occurs at about 55\% of the distance to the target. After reaching max ord, the bullet starts to drop. It will in due time, cross the line of sight. The distance at which this occurs is
called the "zero". If the shooter has adjusted his sights correctly, the zero should occur at the target. In reality, there are two zeros; first one is when the bullet crosses line of sight on its way to max ord; the second on the descent to the target. Most of the time, it is the second zero that is of interest. The first is useful to know in that the shooter knows that for targets located at distances within the two zeros, he needs to aim low. For a target either closer than the first zero or further than the second zero, he needs to aim high.

All of this gives the impression that for a given sight setting, the gun can only be used on targets located at the zero. This is true only in shooting competition where the targets are at a fixed distance and an exact location (the "bullseye" - the black center of a paper target). For field use (hunting and military) the idea of "point blank range" comes into use.

The informal definition of point blank range is a distance that is so short that a gun does not need to be carefully aimed to hit the target. This is seen in newspaper stories like "The policeman shot the bank robber at POINT BLANK RANGE after the robber attempted to get away". For our use, this definition is not correct.

Point Blank Range (PBR) is that distance such that the bullet has dropped max ord distance BELOW line of sight. It is clear that this occurs after the second zero. PBR is a function of max ord which in turn is a function of the sight setting and bullet characteristics. Why is PBR important?

Most field targets (game animals, enemy solders, etc.) have a circular area where they can be hit and still be destroyed. It is the size of this area that determines (along with impact energy) the maximum range the target can be destroyed. For example, a deer (the larger North American type) has a vital area that is about 6 inches in diameter. Using the center of this, we have upto 3 inches above and 3 inches below in which to score a "kill". If a hunter has a gun that is adjusted so it gives 3 inches max ord, the deer can be located any distance from 0 feet from the gun upto the gun's PBR, and all the hunter need do is aim at the center of the deer's vital spot to score a kill. He does not need to make any adjustments or compensate in any way; all he does is "point \& click". This is important in that in field conditions, one does not know the exact distance to the target. All one can do is estimate if the target is within PBR.

Armies do the same thing. Most major armies during WWI and WWII had their battle rifles configured with iron sights that started at 200 yards or more. The American Springfield had a leaf fold-down sight that started at 100 yards and could be adjusted to over 1000 yards. This same sight could be folded down to give a "default" setting of \(\sim 400\) yards. The max ord was about 12 inches. The Germans with their Gewehr 98 had an elegant "rollercoster" sight that started at 400 metres. This gives a max ord of about 12 inches also. The thinking in 1914 in both the German High Command and the American War Department (now called DoD) was that long range shooting ( \(\sim 400\) yards) was "the answer". Remember, 30 years before, armies had black powder arms and the upper effective range was about 200 yards. Part of the lesson learned from WWI by the Germans was that most accurate shooting occur at ~100-200 yards so they altered their Gewehr 98's to accept 100 metre sights. By WWII sniping became "popular" so more precise sighting was in demand by all sides.

How can we sight a rifle in at a standard 100 yard range so we can obtain the desired trajectory?

\section*{BULLET DROP}

One has heard of the quasi-correct statement that a bullet fired from a level gun and another bullet dropped from the shooter's hand fall at the same rate. In a vacuum this would be true but in reality, it is not so.

One has observed at an American football game the flight of a football. In a long pass (> 50 yards) the football appears to hang in the air for
an overly long period of time. This is called "hang time". This is due to angle of attack (angle football makes with the air in its flight path), increased lift, etc. Bullets do the same thing on a smaller scale.

The book "Hatcher's Notebook" [11.05] on page 627 contains a drop table. This table gives the drop has a function of the velocity ratio (V/VO) and flight time. Curve fitting this table gives,
\[
\begin{equation*}
d=\text { drop_in_ft }=16.1 *(v / v 0)^{0.3} * t^{2} \tag{11.29}
\end{equation*}
\]

The flight time is given in (11.14) and the velocity in (11.04) so drop as a function of distance is given by,

Hatcher's table is valid for v/v0 >= 0.333333333 which is good for Wexzalic use where \(v, v 0\) must be \(>=1370\). This ratio would mean that for an impact velocity of \(1370 \mathrm{ft} / \mathrm{sec}, \mathrm{v} 0=1370 * 3=4110 \mathrm{ft} / \mathrm{sec}\). Hatcher's book is an excellent reference for other technical information involving guns.

If we take equation (11.14) and solve it for \(x\) and substitute in (11.30) and then expand in a Taylor series we get,
```

d(t) = 16.1*t^2 + 0.9202*a*b*t^3 + 0.0645*(a*b)^2*t^4 + ...

```

In a vacuum, the ballistic coefficient is infinite. Using equation (11.28) we get \(\mathrm{b}=0\) for an infinite ballistic coefficient. In this case, (11.31) reduces to the classical.
\[
\begin{equation*}
d(t)=16.1^{*} t^{\wedge} 2 \quad \text { when } b=0 \tag{11.32}
\end{equation*}
\]

Equation (11.31) is used to verify that the Wexzalic equation reduces to the classical case when the ballistic coefficient goes to infinity.

From all of this, we can construct the trajectory equation. Classical texts give,
\[
\begin{align*}
& X(t)=V 0 * t * \cos (E)  \tag{11.33}\\
& Y(t)=V 0 * t * \sin (E)-0.5 * g * t \wedge 2 \tag{11.34}
\end{align*}
\]

We use this to derive our trajectory equation. The second term in (11.34) is the drop term. Solving (11.33) for \(t\) and substituting into (11.34) gives a formula in the form of \(Y=f(X)\). We use this idea to produce,
\[
\begin{equation*}
y=x^{*} \tan (E)-d(x)-s \quad \text { where } s=\text { scope height, } \tag{11.35}
\end{equation*}
\]
\(d(x)=\) drop as fcn of \(x\),
\(E=\) firing elevation,
\(x=\) distance in \(x\) direction,
\(y=\) height above line of sight.
One can use (11.35) to make a trajectory table if the firing angle is known along with the muzzle velocity and ballistic coefficient. Most of the time the firing angle is not known. We set \(x=z\), where \(z\) is distance to target in feet and solve (11.35) for E when \(\mathrm{y}=0\). Doing this we obtain,
\[
\begin{gather*}
d(z)+s \\
E=\arctan (-------) \tag{11.36}
\end{gather*}
\]

As an example, take a German Gewehr 98. It fires a 154 grain 8 mm bullet
having a \(B C=0.353\) at a muzzle velocity of \(2936 \mathrm{ft} / \mathrm{sec}\). The lowest setting of the iron sights is for 400 metres. What is the firing angle? We have,
```

V0=2936 ft/sec
BC=0.353
s=0.9 inches = 0.075 feet
z=400 metres = 1312.34 feet

```

From this we generate,
```

a = V0*WZl(1) = 7358.157
b = 1/[BC*(0.471*V0+3039)] = 6.406498E-4
v @ z = 1880.62185 ft/sec
t @ z = 0.55928 seconds
d(z) = 0.5*g*(v/V0)^0.3*t^2 = 4.406038 feet
tan(E) = (d(z)+s)/z = 3.41454E-3
E = 3.414527E-3 radians = 0.19564 degrees = 11.74 minutes

```

The barrel is then pitched up just under \(1 / 5\) of a degree.

\section*{SIGHTING IN A RIFLE AT A STANDARD RANGE}

In the United States and many countries of Europe, outdoor shooting ranges are common. Most ranges (for rifle use) have paper targets starting at 100 yards and ranging to as much as 1 mile (1760 yards). For a standard 100 yard range, the question of how to zero a rifle for a range other than 100 yards is raised. Most hunters set their rifles to have a zero between 150 and 350 yards depending on the calibre of the rifle, bullet weight selected and type of game animal hunted. Since the zero selected by the hunter is (most of the time) greater than 100 yards, the bullet will hit "high" (above the bulleye) on the 100 yard target. The question is: "How much?".

To sight in a rifle for a specified zero using a standard 100 yard target one does the following:
(1) Obtain the \(V 0\) and \(B C\) of selected bullet.
(2) Using specified zero, perform the calculations above to obtain the firing angle as this is needed.
(3) Use equation (11.35) with \(x=300\) to obtain the impact point on the target.
So for the Mauser example above, we need to compute the velocity and drop for the bullet at 300 feet. Using (11.04) and (11.14) we obtain,
\(v @ 300=2671.534\)
\(d(300)=0.179571\)
\(y=x * \tan (E)-d(x)-s=300 * 3.41454 E-3-0.179571-0.075=0.769791 \mathrm{ft}\) which is about 9.24 inches high.

\section*{CONCLUSION}

This chapter outlined some ballistic formulas involving the Wexzal function. Experimental evidence indicates that for very high velocites, these formulas better model actual bullet behavior then classical methods. This indicates that there is second (and maybe third) order effects that are accounted for by the Wexzal function.

This model has the advantage of being easy to implement on a programmable calculator or small laptop computer. The shooter then can quickly make ballistic calculations in the field without having to
consult complex ballistic tables. By using (11.28) one can make a distance/velocity table when given the BC and initial velocity. Solving for \(b\) in (11.28) gives,
\[
1
\]
\[
\begin{align*}
b= & B C *(0.4705469931 * V 0+3038.91861) \tag{11.37}
\end{align*}
\]

One can approximate a as,
\[
\begin{equation*}
a=V 0 * w z 1(1)=2.506184146 * V 0 \tag{11.38}
\end{equation*}
\]

From these two coefficients a table can be made.

\subsection*{11.01:}

Low ballistic coefficients for pellets is a blessing and a bane for airgun shooting. Airgun shooting has been a "serious" activity for Europeans for many years due to tight living space and tight firearm laws. In the U.S.A. airgun shooting has been viewed as something for children to do until old enough for "real" guns. Due to tighter gun laws in the U.S. coupled with the efforts of Dr. Robert Beeman to bring European airguns to the U.S., airgun shooting has become an "adult" sport. "Magnum-mania" - that is, the desire for more power has fueled the popularity of airguns. Many airguns experts date the start of the "magnum-craze" from either 1978 with the introduction of the Feinwerkbau 124 ( \(800 \mathrm{ft} / \mathrm{sec}\) ) or in 1981 with the introduction of the Beeman R1 ( \(\sim 1000 \mathrm{ft} / \mathrm{sec})\). Today there are many \(1000+\mathrm{ft} / \mathrm{sec}\) guns.

There are now airguns ( 0.177 calibre) that shoot over \(1100 \mathrm{ft} / \mathrm{sec}\). These are made by Hermann Weihrauch AG and RWS. Both firms are in Germany. Even with this high velocity, these guns have a maximum effective range of about 50 yards ( 150 feet) due to the rapid decrease in pellet velocity. The rule-of-thumb is that a pellet halves its velocity every 150 feet. Instructions that come with these guns state that the gun is dangerous out to 400 yards. No need to worry about the pellet travelling many miles and hitting anyone. Because of the ballistic properties of pellets, pellet rifles are outstanding for popping backyard pests with next to no noise and very little hazard. The beloved American 0.22 LR calibre rifle has no fear of being driven into extinction by airguns. An average pellet weighs 8 grains; the 0.22 weighs 40 grains.

\subsection*{11.02:}

The 0.22 LR (Long Rifle) is for many Americans their introduction to "real" guns. It fires a 40 grain lead bullet at about \(1200 \mathrm{ft} / \mathrm{sec}\). Because of the higher ballistic coefficient (than pellets) every 50 round box (or 500 round "brick") contain the warning that the bullets can travel over 1.5 miles. The 0.22 is popular due to nearly no recoil, low cost and posessing a sharp "crack!" as a report instead of an earth-shaking "boom!" everytime its fired.
11.03:

The Germans in WWI used a 154 grain bullet as their standard round in their Gewehr 98 Rifles. In the 1920's the Reichswehr (army) decided to make the 198 grain round standard in both machine-guns and rifles. They found that the 154 grain round was too "light" for long range shooting. The heavier 198 grain round had a lower muzzle velocity but much better downrange ( \(\sim 400\) yards) performance. This made logistics much easier also. This was the offical German round in WWII.

\subsection*{11.04:}

In 1916, during WWI the Germans faced a new problem. The British were the first to field battle tanks. The Germans countered with a large bolt action rifle that shot a 13 mm ( \(\sim 0.51\) calibre), 811 grain bullet
at \(2600 \mathrm{ft} / \mathrm{sec}\). This gun, called the "Tankgewehr", had a 40 in barrel and was first put into service in 1918. The German gun magazine "Waffen Revue Nr. 83 IV Quartal 1991" (Weapon Review \#83 4th quarter) has an article starting on page 37 titled "Das 13mm Tankgewehr von Mauser im Ersten Weltkrieg" (The 13mm Tankrifle from Mauser in WWI). It contains many photos showing the size of this gun. A K 98 is also shown for comparsion.

\subsection*{11.05:}

Don't be intimedated by the term "higher function". Higher functions are (most of the time) series solutions to differential equations. These solutions are named after famous mathematicians who first worked on the problem. The problem became important enough that the solution got tabulated and named. An example of this is the Bessel function. It is a solution to a second order differential equation that describes star motion. A German mathematician first solved this equation (in series). This series became important that instead of writing out the series, mathematicians use the notation \(\mathrm{Jn}(\mathrm{x})\). Mathematical handbooks contain tables and formulae involving higher functions.

Likewise, the Wexzal is a higher function. Instead of saying "the solution is a function of the inverse of \(y^{*} \log (y)\) ", we would say "the solution is a function of the Wexzal." There are many higher functions. Some are famous and others are not well known.

The function ei(x) is called the exponential integral and it also is a higher function. It is defined to be


Ei(x) appears in many Wexzalic integrals.
11.06:

The integral,
```

/
| wzl(u)
|----- du = wzl(u) + ei{ln[wzl(u)]} + c
| u
/

```
was first calculated in closed form in April 1983. This was to solve a problem involving the asymptotic expansion of,


This is clearly not related to guns! The Wexzal velocity decay theory presented in this chapter was developed in March of 1993; nearly ten years after the calculation of the flight time integral. Another integral calculated in the same era is,
\[
\begin{aligned}
& 1 \\
& \text { | dx } 1 \\
& \text { | -------- =----- - ei }\{-\ln [w z 1(x)]\}+c \\
& \mid x^{*} w z 1(x) \quad w z 1(x)
\end{aligned}
\]

This answered the question of convergence of integrals of this type as in,
```

/inf
dx
-------- = $0.6508866537 .$. .
x^{*} wzl (x)
/1

```

Today, this integral is used to compute average velocity.

\subsection*{11.07:}

Bullet blow-up is caused more by the rotational acceleration then the sudden translational deacceleration. Once the bullet leaves the muzzle, the rotational forces cause the bullet to tear itself apart. The main way the shooter knows that this has occured is when there is no hole anywhere on the paper target and he knows the sights are set correctly. Bullets designed for hunting, if overdriven (shot at higher velocity than recommended by bullet company), can sometimes explode just after leaving the muzzle. The reason for this is that the hunting bullet must be able to expand freely just the right amount upon hitting the game animal but yet be strong enough to hold itself together during it's journey to the target. This conflicting set of requirements is what keeps the R\&D department of major bullet companies busy.

Full Metal Jacket (FMJ) bullets (like what armies use) do not seem to suffer the problem of bullet explosion as they have a one piece metal "jacket" covering the entire bullet so no lead shows. Because of this FMJ bullets do not expand on impact and thus are not very useful for hunting. They are good for use at target practice. In the U.S.A. surplus military ammo can be had for as little as \(25 \%\) the cost of hunting ammo.

\section*{References for Chapter \#11}
(1) Bliss, Gilbert Ames, "Mathematics for External Ballistics" John Wiley \& Sons Inc, 1944
(2) Hornady Manufacturing Company
"Harnady Handbook of Cartridge Reloading"
Hornady Manufacturing Company, Grand Is7and, Nebraska, 1991
(3) Remington Arms Catalogue "1986 Sporting Arms"

Remington Arms Company Inc.
(4) Lampe1 \& Seitz, "Jagdba11istik - Die Lehre vom jagdlichen Schuss"
Verlag J. Neumann-Neudamm KG, Melsungen 1983
(5) Hatcher, Major General Julian S., "Hatcher's Notebook"

Stackpole Company, Harrisburg, Pa., April 1966

\section*{Chapter 12}

\section*{Application of the Wexzal in Firearms}

\section*{INTRODUCTION}

In the field of firearms comes the question of barrel length vs. muzzle velocity [12.01]. Most shooters are aware of the fact that everything else held constant, longer barrels (within practical limits) produce higher muzzle velocities. Studies have been made by both hobbyists and experts on this topic. The muzzle velocity of a gun with a long barrel is measured and then the barrel is cut one or two inches and then remeasured. This is kept up until a table of 6-7 readings is made. (Fig 12.01)

Table for 7 mm Mauser M1893 with 140 gr . bullet.
[12.02]
\begin{tabular}{|c|c|}
\hline Inches of barrel & Muzzle Velocity in ft/sec \\
\hline 18 & 2506 \\
\hline 20 & 2561 \\
\hline 22 & 2608 \\
\hline 24 & 2650 \\
\hline 26 & 2687 \\
\hline 28 & 2721 \\
\hline 30 & 2752 \\
\hline
\end{tabular}
(Fig. 12.01)

\section*{LOGARITHMIC VS. WEXZALIC CURVE-FIT}

From initial inspection of Fig. 12.01, the trend is logarithmic. If we perform a logarithmic curve-fit, we find,
```

Muzzle_velocity = 1105.616 * log(bbl_length) + 1121.568 where "bbl_length" ${ }^{-}$is the barrel length in inches.

```

The Root-Mean-Square (RMS) of this fit is \(2.146 \mathrm{ft} / \mathrm{sec}\). For a data-set whose average value is 2641, this leads to an average error of \(0.08 \%\). Observing that the curve tends to flatten as the barrel length increases and to further impose the condition that at zero length, the muzzle velocity be set to zero, we try a curve-fit in the form of,
a


Where 'a' and 'b' are constants. Because \(1 / w z 1(1 / x) \sim 1-1 /\left(m^{*} x\right)+\). The constant 'a' tells the theoretic asymptotic velocity if given a barrel of infinite length. The constant 'b' tells how quickly the bullet accelerates up the barrel. The lower the value of 'b', the quicker the acceleration. If \(b=0\), then we would have a constant function because \(w z l(0)=1\). For \(b>0\) and zero barrel length, we would have \(v=a / w z 1(b / 0)=a / i n f=0\).

For curve-fitting, (12.02) cannot transformed into linear form. Therefore a non-linear curve-fitting method must be used. Most non-linear curve-fitting methods require an initial value ("guess") for all of the coefficients. So fitting the data in Fig 12.01 via a FORTRAN program called SKRFIT to perform non-linear curve-fitting in the form of (12.02) we obtain the values for 'a' and 'b',
3294.530

Here the RMS is 2.5 times smaller which means it is a better fit.

\section*{ENERGY \& PEAK PRESSURE}

From an equation in the form of (12.02) can we deduce the firing time, the peak pressure and location of peak pressure? Using standard engineering units let:
```

a = Asymptotic velocity in ft/sec
b = "Charging rate" in ft
$L=$ Length of barrel in ft
$x=$ Bullet location in barrel in ft
$v=$ Velocity at point x in ft/sec
$k=$ Mass of bullet in slugs (1 slug $=225400$ grains)
$r=$ Area of bore in square inches
$f=$ Force in pounds
$p=$ Pressure at point x in 1b/in^2
$\mathrm{E}=$ Energy in ft-7b
t = Time in seconds.

```

From (12.02) let us calculate the acceleration \& force on a bullet.
\[
\begin{aligned}
& a \\
& v=------ \\
& w z 1(b / x)
\end{aligned} \quad x \text { in }[0, L]
\]
\begin{tabular}{|c|c|c|}
\hline dv & a*b & \\
\hline & & \((\mathrm{ft} / \mathrm{sec}) / \mathrm{ft}=1 / \mathrm{ft}\) \\
\hline & ^2*\{m+log[wzl (b/x)] & \\
\hline
\end{tabular}

Multiply (12.05) by \(v(x)\) to get acceleration.

\(d t \quad d x \quad x^{\wedge} 2^{*} w z 1(b / x)^{\wedge} 3^{*}\{m+7 \log [w z 1(b / x)]\}\)
From classical physics,
\[
f=k * \begin{array}{ccc}
d v & p=\begin{array}{c}
k \\
d t
\end{array} & \begin{array}{c}
d v \\
d t
\end{array} \\
d t
\end{array}
\]

So the pressure on the bullet would be,
```

k dv
a^2*b*k/r
- * -- = ------------------------------------ 1b/in^2

```
\(r \quad d t \quad x^{\wedge} 2^{*} w z 1(b / x)^{\wedge} 3 *\{m+\log [w z 1(b / x)]\}\)
The area under (12.06) times the bullet mass is the energy of the projectile.
\[
\text { Energy }=E=\left\lvert\, \begin{align*}
& / x  \tag{12.08}\\
& a^{\wedge} 2 * b * k \\
& u^{\wedge} 2 * w z 1(b / u)^{\wedge} 3 *\{m+\log [w z 1(b / u)]\}
\end{align*}\right.
\]

When (12.07) is graphed from \(x=0\) to \(L\), the curve reaches a peak then quickly decays to zero. By solving the equation,
\[
\begin{align*}
& d \quad d v \\
& --(--)=0  \tag{12.09}\\
& d x d t
\end{align*}
\]
numerically for \(x\) when given various values of \(b\), one finds that there is \(a\) linear correlation between \(b\) and the location of the peak pressure, Xp. \(X p\) is the value of \(x\) that satisfies (12.09) for a given value of \(b\).
b
Xp = --------------------- = b * . 39584
\(m^{\star}\) sqrt(2)*exp[sqrt(2)]
A handloader is someone who assembles their own ammunition. Handloading is a popular hobby in the United States and other couuntries that allow citizens to own and use firearms. For modern arms there are only four components that the handloader need address: Bullet, primer (small metal blasting cap that is inserted into the base of the shell), the shell (case) and the bullet. The selection of primer and case is based on the calibre of the gun itself. Different calibers are *NOT* interchangable even if they use the same bullet size. E.g. The American .30-06 and .30-30 use bullets that are 0.308 in diameter. The cases are different in shape and size. The handloader main focus is on the weight/style of bullet and the type and amount of powder. For a given calibre, the bullet style can range from flat nose to roundnose up to Spitzer (pointed). Weights can vary over a factor of 2. E.g. The .30-06 can be loaded with bullets weights from 100 grains up thru 250 grains. Different weight bullets (most of the time) require different powders. Powders vary in their burn rates. Contrary to popular belief, gunpowder does not "explode" (unless enclosed in a non-expanding enclosed volume). Gunpowder burns at a rate that is determined by the chemical properties of the powder. Each gunpowder company has their own line of powders that vary in burning rate. The numbers employed (e.g. IMR-4895) do not appear to the authors to correlate to burnrate; they are used as identifiers only.

When shooters speak of "fast" or "slow" gun-powders, they mean how quickly the powder reaches peak pressure with repect to bullet travel. A "fast" powder would have a smaller Xp value than a "slow" powder. Fast powers are used in pistols and smaller calibre rifles where rapid bullet acceleration is required (because the barrel is short). Longer barrelled arms and/or "magnum" arms are better served with slower powers. Shooters are also concerned with not only the "quickness" of the powder, but also the value of peak pressure. Most modern rifles operate in the range from 40000 to \(65000 \mathrm{lb} / \mathrm{in}^{\wedge} 2\). The handloader must be careful of this fact when developing his loads. Exceeding the maximum pressure for a given load could cause the firearm to explode and injure (or kill) the shooter. Most reloading manuals have charts and tables explaining the maximum amount of powder (of a selected type e.g. IMR-4064) that can be safely used with a given bullet type/weight and primer.

Advice to reader: If the reader is interested to get started in handloading, please obtain expert instruction from a certified gunsmith
or shooting instructor. Read all manuals and understand everything before proceeding. Handloading is in of itself quite safe if done correctly.

Handloading is most important to those whose guns are not longer "supported". E.g. Shooters who have Japanese Arasakas ( 7.7 mm ) from WWII. No U.S. ammunition company currently makes ammunition for this arm. Current arms such as the AR-15 (M-16 lookalike) which uses . 223 Remington ammunition do not suffer this problem.

Why is the location of peak pressure important? In this model, the sooner the peak pressure occurs (with respect to bullet travel) the quicker the velocity increase "flattens out". The shooter's rule-of-thumb is that (on the average) peak pressure is reached within one bullet length of travel. For an example of this discussion is the following:

A shooter has a German M1898 ("K-98 Mauser") with a 24-in barre1. He has two different powders (for a given bullet weight) that both produce a muzzle velocity of \(2857 \mathrm{ft} / \mathrm{sec}\) [12.03]. One loading is a with a "fast" powder; the other with a "slow" powder. Being a fan of Mauser weapons, our shooter considers aquiring a WWI German M1898 Mauser with a 29.3-inch barrel with high hopes of obtaining higher muzzle velocities. Before shelling out the cash for such a costly item, he takes his K-98 and loads to a gun testing lab to obtain a time-history of powder pressure. [12.04] At the gun 1ab, scientists attach special pressure measuring equipment to the gun. An oscilloscope is used to obtain a time/pressure curve. Via standard curve fitting methods or cubic splines, it is possible to find the location of peak pressure. Out of this calculation, our friend learns that the fast powder has a value of \(X p=0.06\) and the slow powder has a value of \(X p=0.08\) He then starts to calculate:
\begin{tabular}{|c|}
\hline \multirow[t]{13}{*}{```
Mauser K-98:
Bullet mass = k = 154 grains = 6.83E-4 slugs
Barre1 area =r = .323^2 * PI/4 = 0.08194 in^2
b_fast = 0.06 / 0.39584 = 0.15158
b_slow = 0.08 / 0.39584 = 0.20210
a_fast = 2857 * wzl (0.15158/2) = 3319.95
a_slow = 2857 * wzl (0.20210/2) = 3461.83
L = 29.3 / 12 = 2.4417
v = a / wzl(b/L)
v_fast = 3319.95/wz1 (0.15158/2.4417) = 2926.86 ft/sec
v_slow = 3461.83/wz1(0.20210/2.4417) = 2943.87 ft/sec
Peak_pressure_fast = 53033 1b/in^2 [using (12.07)]
Peak_pressure_slow = 43248 1b/in^2
```} \\
\hline \\
\hline
\end{tabular}
(Fig. 12.02)
He gains from 70 to \(90 \mathrm{ft} / \mathrm{sec}\) muzzle velocity depending on the type of powder used. In shooting, this is considered a good increase. \{12.01\}

\section*{FIRING TIME}

Energy and velocity are both given as a function of distance, \(x\), down the barrel. Up to this point time has not been discussed. It will be shown that this model can determine the time from peak pressure to muzzle exit; but is unable to determine the time from \(x=0\) to peak pressure. Computing the reciprocal of (12.02) gives
```

1 wzl(b/x)

- = -------- sec/ft

So by integrating with respect to distance will give time.

```
 /Bullet_exit
Firing_time = - * wlol(b/u) du sec
```

The integral of wzl(1/x) can be written in closed form.

```
/
\(\mid \quad 1\)
\(\mid w z 1(1 / x) d x=-\star\{1 / \ln [w z 1(1 / x)]-\ln [\ln (w z 1(1 / x))]\}+c\)
```

To see if we can compute the time from $x=0$ to bullet exit, we need to see if the integral is convergent at zero. (Fig 12.03)

Let us compute the limit
$\lim \{1 / \ln [w z 1(1 / x)]-\ln [\ln (w z 1(1 / x))]\}=$
$x->0+$
$\{1 / \ln [\mathrm{WZ} 1(x)]-\ln [\ln (w z 1(x))]\} \sim-\ln \{\ln [w z 1(x)]\}=-\inf$

Value of $x \quad \mid$ Value of (12.13)

3.00	6.538161728
2.00	4.818573365
1.00	2.701279626
0.50	1.229903476
0.2239497283	0.0
0.10	-0.920430676
0.01	-2.646710782
1.0E-10	-6.880294546
0.0	-inf

(Fig. 12.03)

As long as the lower limit is $>0$, the integral is convergent. We then can compute the firing time from the location of peak pressure, Xp, to bullet exit, L. For our WWI Mauser example, the time would be.


Or just over a millisecond.

## FIRING TIME FROM ZERO TO Xp

The integral (12.13) was shown to be divergent at $x=0$. With this, how do we resolve the firing time from $x=0$ to $x=X p$ ? There are two options open: (1) Scrap this entire model and find something better, or (2) Find a function, $f(x)$ for $x$ in $[0, X p]$ that has the following properties
(1) $f(x)$ "closely" matches (12.04) for $x$ in ( $0, X p$ )
(2) $f(0)=0$
(3) $f(X p)=v(X p)$
(4) The time integral is convergent. That is,

Let us assume that for the interval [0,Xp] the bullet experiences linear acceleration with respect to time. We have,

$$
\begin{equation*}
\text { Acceleration }=h * t \quad \text { where } h \text { is rate of acceleration } \tag{12.15}
\end{equation*}
$$

Integration with respect to time gives velocity.

$$
\begin{equation*}
v=0.5 * h * t \wedge 2 \tag{12.16}
\end{equation*}
$$

Integration of (12.16) with respect to time gives distance covered.

$$
\begin{equation*}
x=1 / 6 * h * t \wedge 3 \tag{12.17}
\end{equation*}
$$

Setting $x=X p$ and $v=V p$ (velocity at $X p$ ) and performing the algebra leads to:

$$
h=\begin{gather*}
2 / 9 * V p^{\wedge} 3  \tag{12.18}\\
\text { Xp^2 }
\end{gather*} \quad T p=\left|\begin{array}{c}
6 * X p \\
\hdashline-\cdots \\
h
\end{array}\right| \wedge(1 / 3)
$$

Now to test for convergence. Solving (12.16) and (12.17) to generate a function $v=f(x)$, we get:

$$
\begin{equation*}
v 1(x)=\left(4.5 * h * x^{\wedge} 2\right)^{\wedge}(1 / 3) \tag{12.19}
\end{equation*}
$$

Letting $J=\left(4.5^{*} h\right)^{\wedge}(1 / 3)$ we have the integral
which is clearly convergent.
How close does (12.19) match (12.04) for $x$ in $[0, X p]$ ? Let us calculate from the Mauser example:

```
Xp=0.06923
Vp=823.2 ft/sec
h = 2.5864731E+10
Tp =2.523E-4 sec = 252 microseconds.
J = 4882.476
```

Finding the RMS of the difference between $v 1(x)$ and $v(x)$ for $x$ in [0,Xp] leads to the integral,


```
| 0.06923 | | wzl(0.1749/u) |
```

I /0

The value of RMS $=12.351 \mathrm{ft} / \mathrm{sec}$.
The average velocity of $v(x)$ for $x$ in $[0, X p]$ is,


So the average error would be $12.351 / 503.125=2.45 \%$

## TOTAL FIRING TIMES FOR DIFFERENT POWDERS

For the gun example in Fig. 12.02 we will compute the different times to compare "fast" vs. "slow" powders. Tp is time to peak pressure, T24 is time from $x=0$ to 2 ft (24-in barrel), T29 is time from $x=0$ to $x=2.4417$; Vp is velocity at peak pressure. All times are given in microseconds.

	Tp	Vp	T24	T29
Fast powder	223	807	1084	1237
Actual powder in M1898	252	823	1120	1273
Slow powder	285	842	1159	1311

(Fig. 12.04)
increased performance by delaying peak pressure
Assuming that the model presented is "correct" i.e. bullet acceleration is described by a Wexzalic function, is there a way to theoretically increase muzzle velocity? If so, how much?

Using (12.07) and (12.10) one can find the location of $x$ such that the velocity for the given pressure is maximum. This is done by solving,

> dp
> $--=0$
> $d x$

This gets most "messy" if done by hand so we use a symbolic algebra system such as MAPLE to obtain the most interesting answer of,

$$
x=k 2 * L, k 2=\frac{1}{-*} \frac{e^{*} \operatorname{sqrt}(2)}{2} \quad e^{\wedge} \operatorname{sqrt}(2) .--(267298447
$$

So for a rifle with a 29.3 inch barrel, the peak pressure location would be 13.69 inches down the barrel. If such a gun were built, it would have the barrel bulge (thickest part to contain the pressure) just forward of the back sight.

The following table demontrates that an Xp less than this optimal distance indicates that the powder has burned out "too quickly" while Xp values greater than the optimal indicate that the powder "ran out of barrel too
soon". A WWI army rifle with a 154 grain bullet could (in theory) have a muzzle velocity of over $5000 \mathrm{ft} / \mathrm{sec}$ while keeping peak pressure under 50000 1b/in^2. (The varminters $\{12.02\}$ would love it!) If "Wexzalic" gunpowder, having properties just described, could be made, it would alter the dynamics of firearms. The effect could be as dramatic as the change from blackpowder to smokeless (Rauchfrei) back in the 1880-1900.

German M1898 rifle			
$\mathrm{Pp}=47809$ 1b/in^2, L=29.3 in, K=154 grains, Calibre=0.323			
Xp	Velocity	Firing time	
0.010	1257.25636	0.002191629457	
0.020	1738.90258	0.001714199696	
0.030	2084.78152	0.001520851323	
0.040	2358.50629	0.001414861865	
0.050	2585.44671	0.001348233662	
0.060	2778.93945	0.001302937886	
0.070	2947.07279	0.001270564672	Near actual data for M1898
0.080	3095.20687	0.001246628680	
0.090	3227.11569	0.001228507222	
0.100	3345.57606	0.001214559877	
0.200	4098.88698	0.001170103527	Minimum firing time
0.300	4476.64647	0.001176912658	
0.400	4696.29477	0.001194278604	
0.500	4833.23338	0.001214297501	
0.600	4921.54938	0.001234654588	
0.700	4979.06591	0.001254554258	
0.800	5016.03038	0.001273718267	
0.900	5038.74694	0.001292067833	
1.000	5051.29642	0.001309605844	
1.100	5056.42763	0.001326368626	
1.110	5056.61180	0.001328004098	
1.120	5056.74290	0.001329632354	
1.130	5056.82244	0.001331253446	
1.140	5056.85187	0.001332867427	Theoretic peak velocity.
1.150	5056.83260	0.001334474349	
1.160	5056.76601	0.001336074264	
1.170	5056.65341	0.001337667224	
1.180	5056.49607	0.001339253280	
1.190	5056.29525	0.001340832486	
1.200	5056.05215	0.001342404892	
1.300	5051.53457	0.001357766257	
1.400	5043.87044	0.001372502977	
1.500	5033.79946	0.001386662126	
1.900	4978.84058	0.001438330812	
Xp in feet. V in ft/sec. Time in seconds			

(Fig. 12.05)
Careful examination of figure 12.05 shows that minimum firing time and peak velocity are not the same. For precision shooting, minimizing the firing time is important. The less time the entire firing sequence takes, the less chance there is of missing the target due to flinching or other unwanted movement during firing.

## CONCLUSION

This chapter showed that by using data for barrel length vs. velocity, it was possible to construct a mathematical model that approximated actual practice. This model predicts that given a super slow powder
that reaches peak pressure far later than actual powders, the muzzle velocity would be in far excess of today's velocities.

This model makes no claim to being the best representation of firearm behavior. A better formula that matches barrel/velocity data (as given in Fig. 12.01) that avoids the divergent integral problem and at the same time returns the correct peak pressure value/location is desired. It would be instructive for interested readers to research this topic in more detail.
12.01:

In WWI the Germans claimed a muzzle velocity of $2935 \mathrm{ft} / \mathrm{sec}$ out of a 29.3-in M1898 Mauser with a 154 grain bullet [12.05]. By WWII they converted to the M1898 with a 23.6-in barrel (K-98). This weapon produced a muzzle velocity of $2850 \mathrm{ft} / \mathrm{sec}$ with the same load. The forgoing produces the following values for our model: $a=3386.06, b=0.1749, X p=0.06923$ with a peak pressure of $47809 \mathrm{lb} / \mathrm{in} \wedge 2$. The shorter firearm cost less to produce and was easier for the average solder to use. That is why the conversion was made.
12.02:
"Varminters" are shooters who like to shoot at small animals with small calibre ( $<0.277$ in) rifles. These rifles shoot small ( $\sim 90$ grains) bullets at very high speeds ( $\sim 3700 \mathrm{ft} / \mathrm{sec}$ ) resulting in flat trajectories. The rifles have scopes on them to aid in the $300+$ yards ( $900+$ feet) shooting. Gophers, Prairie Dogs, small coyotes, etc are the (moving) targets of choice. This sport is very popular in the wide open spaces of the western U.S.A.

## References for Chapter \#12

(1) Milek, Bob "Barrel Length vs. Velocity" From "Guns \& Ammo" page 46
(2) Davis Jr, William "Expansion Ratio Major Factor in Barrel Length vs. Velocity" From "American Rifleman" unk issue, page 26
(3) 01 son, Ludwig, "Mauser Rifles" National Rifle Association, 1986
(4) Brownell, Lloyd E., "Firearms Pressure Factors" Wolfe Publishing Company, 1990
(5) Harris, C.E., "A Century of the $7.9 \times 57 \mathrm{~mm} "$ American Rifleman, January 1990

## Chapter 13

## The Application of the Wexzal in Automotive Testing

## INTRODUCTION

It is 2 AM on Main Street in Anytown USA. The stillness of the night is shattered by the roar of engines and the squeal of tires as a 3000-1b beast begins its 1/4-mile trek in search of high speed and under 12 -second runtimes.

The $1 / 4-\mathrm{mile}$ run is the most popular way that motor vehicles (automobiles and motorcycles) are "benchmarked". The vehicle is positioned at the end of a straight road that extends for at least $1 / 4-\mathrm{mile}$ (1320 ft). It then is accelerated from rest to maximum speed in as short a time as possible. Both the speed and time are recorded. This test measures both the power (acceleration) and (near) maximum speed of the vehicle. Many Automotive related publications such as "Road \& Track", "Car \& Driver", "Motorcyclist" and "Consumer's Report" report on this and other facts about motor vehicles. The $1 / 4$-mile numbers have evolved from a test result only of interest to "Hot-rodders" to something of mainstream interest. In Europe, they use the 400 metre test in the same way.

Another figure reported is the acceleration time from a stop to 60 MPH . This number is useful for accelerating from an on-ramp onto the freeway. It is important that a vehicle be able to be at the same speed as the traffic already on the freeway as the vehicle merges with the traffic. In newer vehicles (mostly motorcycles), 60 MPH can be reached while still in first gear. The 0-60 MPH time figure is the most popular topic (behind horsepower, repairing and cost) amoung people discussing motor vehicles. Not only American ads for cars brag of rapid acceleration; most German ads have the phase "Von 0 auf Tempo 100 in x.xx Sekunde" [From 0 to 100 kilometre/hr in x.xx sec].

A vehicle's acceleration is determined by many factors. Amoung these are:
(1) Horsepower of the engine.
(2) Torque of the engine.
(3) Gearing of transmission.
(4) Weight of vehicle.

Most car publications present a graph showing the rotational speed of the engine in Rev/min (RPM) on the X -axis and the horsepower (HP) on the Y -axis. A second graph with the same RPM on the $X$-axis and the torque in ft-1b on the $Y$-axis is given. An internal combustion engine has a point where peak HP is generated. After this point the HP decreases. The torque curve has the same type of shape. The peak HP of an engine is the main factor in determining the top speed of the vehicle. The peak torque determines the peak acceleration of the vehicle.

The important thing to note is the location (in RPM) of both peak $H P$ and torque. For a given $H P$, the earlier the peak torque occures on the RPM scale, the "peppier" the vehicle "feels". This "peppy" behavior comes at the expense of high speed accelerating ability. Vehicles with "late" peak torque values feel "sluggish" driving from stop-light to stop-light in a city. On a freeway, these vehicles can pass slower moving vehicles with little difficulty.

In Indiana [13.01] there was a race between a Mercedes and a Pontiac. In the best "Cannonbal1" tradition, the race was at night and involved travel through small towns. The Pontiac could out accelerate the Mercedes in the "Stoplight derby" (stoplight to stoplight driving) that comprised the first part of the race. Once they got on the freeway, the Mercedes was able to cruise at 130 MPH with little discomfort. The Pontiac had all it could do to maintain 110 MPH . The Pontiac's engine and gearing were designed for rapid acceleration in city driving; the Mercedes was designed with the Autobahn in mind where traffic averages over 90 MPH. The detailed analysis of transmission selection/engine design is beyond the scope of this book. $\{13.01\}$

## TIME VS. VELOCITY

Because of the nature of the HP/torque curve of an internal combustion engine, the acceleration of a vehicle would not be linear. The speed would increase quickly at the start of the acceleration run and then level-off to a maximum speed. This maximum speed is called the "asymptotic velocity" of the vehicle.

Assuming that the velocity is zero at time zero and the vehicle has an asymptotic velocity, a Wexzalic function in the form of,

$$
\begin{gather*}
a  \tag{13.01}\\
v=\frac{---\cdots---}{w z 1(b / t)}
\end{gather*}
$$

might be a possibility. It was observed that this appears to be the case as $v(0)=0$, and $v(i n f)=a$. When plotted, equation (13.01) looks very much like the "time vs. speed" curve as given in auto journals when they review a new car. The remainder of this chapter discusses the mathematical outcome of this assumption.

Like other applications, we will use standard engineering units:
a = Theoretic asymptotic velocity of vehicle in ft/sec
b = "Charging rate" in seconds
$L=$ Length of acceleration run in ft (1320 ft $=1 / 4 \mathrm{mile}$ )
$x=$ Position of vehicle in ft
$v=$ Velocity of vehicle in ft/sec
$m=$ Logarithm conversion factor $=\log (e) \sim 0.43429 \ldots$
$\mathrm{t}=$ Time in seconds
$k=$ The dimensionless term: m*[L/(v*t)-1]
T60 = Time to $60 \mathrm{MPH}(88 \mathrm{ft} / \mathrm{sec})$ in seconds
X60 $=$ Distance to 60 MPH in feet
"Road \& track" and others publish the time it takes a vehicle to accelerate from 0-30 MPH, 0-40 MPH, etc. From this we can make a table such as Figure 13.01 [13.02]:

Time (sec) Velocity (MPH)

2.8	30
4.6	40
6.3	50
8.8	60
11.3	70
14.7	80
19.0	90

(Fig. 13.01)
We wish to obtain values for the two coefficients, $a, b$, in (13.01) based on the data in figure 13.01. Any non-linear bi-parametric curve-fit program could be used. We used a FORTRAN program called SKRFIT (originally used to fit barrel lengths vs. muzzle velocity. See chapter \&\&) to obtain the coefficients to (13.01) for figure 13.01.

Converting to standard units we obtain,

$$
v=\begin{align*}
& 330.232668  \tag{13.03}\\
& \mathrm{wzl}(18.7498 / t)
\end{align*} \quad, \quad \text { RMS }=0.7679
$$

Note that the Root Mean Square error is just a little over 1/2 MPH.

## DISTANCE AS A FUNCTION OF TIME

From (13.01) we can calculate the distance a vehicle covers as a function of time. From physics,


The integral of $1 / w z 1(1 / u)$ can be expressed in closed form. (See chapter \&\& for how we obtained this result).
/
$\left\lvert\, \begin{array}{cc}\mathrm{du} & \mathrm{u} \\ 1 \\ -------------* & \text { ei }\{-2 * \ln [w z 7(1 / u)]\}+c\end{array}\right.$
| wzl(1/u) wzl(1/u) m
1
From this we can obtain a closed form formula for the distance a vehicle covers when given the time. Let us define,

$S(t)$ is known as the "distance function." The distance would then be

$$
\begin{equation*}
x=a * b * S(t / b) \tag{13.07}
\end{equation*}
$$

The acceleration equation can be calculated via,

$$
\begin{array}{lcc}
d & 1 & {[1 /(u * w z 1(1 / u))]^{\wedge} 2} \\
-- & -------------------------(u) \\
d u & w z 1(1 / u) & 1 / w z 1(1 / u)
\end{array}
$$

m + ------------

$$
\begin{align*}
& 225.158637 \\
& \text { v_in_MPH =------------ } \quad \text { RMS }=0.52357 \mathrm{MPH} \tag{13.02}
\end{align*}
$$

The acceleration of the vehicle would be,
Acceleration_in_ft/sec^2 $=a / b * D(t / b)$
(13.09)

Equations (13.07) and (13.08) are written this way so a standard table containing the values: $t, 1 / w z 1(1 / t), S(t), D(t)$ can be used. This is for the case where no computing equipment is available.

## CALCULATING 0-60 MPH TIME FROM 1/4-MILE RUN-TIME

Many "Hotrod" publications and other journals devoted to improving the performance of standard street cars and motorcycles often report only the $1 / 4-m i l e ~ t i m e ~ a n d ~ s p e e d . ~ T h e ~ 0-60 ~ M P H ~ t i m e ~ i s ~ o m i t t e d ~ a s ~ t h i s ~$ information is more useful to commuters and other non-racing drivers.

It is possible to calculate the $0-60 \mathrm{MPH}$ time and distance covered when given the $1 / 4$-mile speed and time. Using (13.01) and (13.07) we need to solve for the constants 'a' and 'b'. Rewriting (13.07) so we can make substitution for 'a' we have,

$$
\begin{equation*}
a=v * w z 1(b / t) \tag{13.10}
\end{equation*}
$$

where $v$ is velocity at the $1 / 4$-mile point and $t$ is the time to the $1 / 4-\mathrm{mile}$ point.

Writing out (13.07) gives,

$$
\begin{gather*}
t / b \quad a * b *\left\{-----+\frac{1}{m}+e i[-2 * \ln (w z 1(b / t))]\right\} \\
w z 1(b / t) \tag{13.11}
\end{gather*}
$$

Substituting the right hand side of (13.10) for 'a', distributing and moving all known qualitites to the left hand side gives,

$$
m *(--t)=b * w z 1(b / t) * e i[-2 * \ln (w z 1(b / t))]
$$

Try to simplify by removing the 'b' multiplier. Let

$$
z=\begin{align*}
& b \\
& -  \tag{13.15}\\
& t
\end{align*}
$$

Substituting (13.15) into (13.14) and dividing by 't' gives,

$$
k=m * \underset{\substack{ \\(---1 \\ k t}}{\stackrel{L}{ }-1)=z * w z 1(z) * \operatorname{ei}\{-2 * \ln [w z 1(z)]\}}
$$

All of the known values are on the left hand side of (13.16). We then solve for 'z' via any standard numerical method such as Newton-Raphson or Halley's method.

To obtain a close initial value for 'z', one needs to know what the right hand side of (13.16) looks like.

Let us define the "car equation",

$$
\begin{equation*}
\operatorname{car}(u)=u * w z 1(u) * \text { ei }\{-2 * \ln [w z 1(u)]\} \tag{13.17}
\end{equation*}
$$

Numerical inspection shows that,

$$
\begin{equation*}
\lim _{u \rightarrow>+} \operatorname{car}(u)=0 \tag{13.18}
\end{equation*}
$$

For u going to infinity we have,

$$
\begin{gather*}
1  \tag{13.19}\\
-e i(-u) \sim------ \\
u^{\star} \exp (u)
\end{gather*}
$$

From this, we obtain,

Asymptote (13.20) reduces to,

$$
\begin{align*}
& \text {-1 } \\
& 2 * w z 1(u) * u / m \tag{13.21}
\end{align*}
$$

So we can compute the limit,

```
lim}\operatorname{car(u)= ---w*wl(u)
u->inf 2*Wzl(u)*u/m 2
```

From (13.17) thru (13.22) one can get a notion as to the behavior of car(u). In the appendix is a table for car(u) along with $S(u), D(u), V(u)$.

Once the value of ' $z$ ' has been computed, one then obtains the values for 'b' and 'a' via,

$$
\begin{align*}
& b=z * t  \tag{13.23}\\
& a=v * w z l(b / t)=v * w z l(z) \tag{13.24}
\end{align*}
$$

To get the T60 value one solves ( $60 \mathrm{MPH}=88 \mathrm{ft} / \mathrm{sec}$ ),

$$
\begin{align*}
88= & -\cdots  \tag{13.25}\\
& w z 1(b / T 60)
\end{align*}
$$

$$
\stackrel{a}{---=w z l(b / T 60)}
$$

88. 

Inverting the Wexzal term leads to,

$$
\begin{array}{ccc}
b & a & a  \tag{13.27}\\
--- & --- & * \\
\text { T60 } & 88 . & 88 .
\end{array}
$$

Reciprocating and multiplying by 'b' gives the final answer.

$$
\begin{align*}
& \text { b } \\
& \text { T60 }  \tag{13.28}\\
& \begin{array}{c}
\text { =------------- } \\
\text { a }
\end{array}
\end{align*}
$$

```
--- * log(---)
88. 88.
```


## EXAMPLE OF CALCULATION OF T60 FROM 1/4-MILE FIGURES

The 1990 Nissan 300-ZX twin turbo [13.03] has the following 1/4-mile figures:

```
v = 101 MPH = 148.13333 ft/sec
t = 14.1 seconds
```

Using (13.16) we obtain for the left hand side,
1320.00
0.4342944819 * (------- - 1) $=-0.1598298841=k$
2088.68

Solving for 'z' in (13.16) returns the value,
$z=1.391953175$
$w z 1(z)=2.956608679$
Using (13.23) and (13.24) we obtain the values for 'b' and 'a'.
b = z * t = 19.62653977
$a=v * w z 1(z)=437.9722989$
Using (13.28) gives us the T60 value.
$\mathrm{T} 60=5.65808464$ seconds.

The actual T60 time for this vehicle is 5.60 seconds. This amounts to an error of 1.04\%. Note that different journals will report slightly different values for the vehicle under consideration. This is caused by variance in test-driver technique, location/conditions of race-track where test is performed and variation in the vehicles themselves.

The computed distance covered is:
$X 60=a * b * S(T 60 / b)=438 * 19.6 * S(0.2882874264)$
$8595.880742 * 0.0348732485=299.7662852 \sim 300$ feet.

The Nissan 300 ZX is a high performance sports car \{13.02\}. This vehicle requires about 300 feet to accelerate from a dead stop to 60 MPH .

This is not the quickest. Motorcycles can (in general) out-run automobiles due to their better power to weight ratio. One of the fastest motorcycles is the Kawasaki ZX-11 \{13.03\}. The $\mathrm{ZX}-11$ is a 1100 cc motorcycle that weighs about 600 1b and has a 100+ HP engine.
Its performance figures are as follows [13.04]:
Quarter mile speed \& time: 131.82 MPH in 10.52 seconds.
Actual $\mathrm{T} 60=2.65$ seconds .
Computed T60 $=2.53953$ seconds
Error in T60 $=4.17 \%$
Computed distance covered in computed T60 time $=$ X60 $=133.7$ feet

## FIELD CALCULATION OF 0-60 MPH WITHOUT USE OF COMPUTER

Calculation of the 0-60 MPH time from 1/4-mile data via equations (13.16) thru (13.28) is best left to a programmable calculator or small computer due to the complexity of the equations. With the use of a special graph and a simple 4 -function calculator, it is possible to calculate the same quantities without the use of complex formulae.

An "L"-graph is a Sklaric graph with three curves plotted on it:
(1) $y=w z 1(x)$
(2) $y=100 * S(0.10 * x)$
(3) $\left.y=-10 * u * w z\rceil(u) * \operatorname{ei}\left\{-2^{*} \ln [w z\rceil(u)\right]\right\}$ where $u=x / 10$

As it can be surmised, the first equation is for computing velocity; the second is for distance and the third is a graphic representation of equation (13.17) but with its sign reversed. A Sklar graph shows best detail for values $<10$ as 10 is $82.67 \%$ of the total Sklaric axis. Thru experimentation it was found that the powers of 10 chosen for the second and third equations gave the greatest ease of reading values for the range most likely encountered in working actual 1/4-mile problems. If a class of vehicle under study (e.g. drag racers or rocket cars) require different powers of 10 for ease of reading on the "L"-graph, then just replot the three equations as required.

The three equations when plotted on the same Sklar graph produce a script letter "L". The first part of the "L", running from $(0,1)$ to (inf,inf), is the graph of the first equation listed $[y=w z l(x)]$. The "stem" of the "L" running from $(0,0)$ to (inf,inf) is the distance equation. The last part running from $(0,0)$ to (inf,m/2) is (13.17) with its sign reversed.

It is difficult to obtain more than 2-3 decimal places when reading anytype of analogue display (graphs, slide rules, gauges, etc). Because of this, the results from the "L" graph will be approximate at best. There is one advantage of graphs over straight numeric calculation: The graph of a function is also the graph of the inverse of that function. Instead of reading the ' $x$ ' value and then reading the $y(x)$ from graph, one just reads the ' $y$ ' value and looks on the graph for $x(y)$. For non-linear functions that are difficult (computationally intensive) to invert, this offers a solution provided that 2-3 decimals of precision is all that is needed.

The following describes how to solve a 0-60 MPH problem with the use of a 4-function calculator ( 8 decimal place display) and an "L" graph. An example calculation will be given at the same time to demonstrate the procedure. The phrases "first", "second", "third" equations refer to the three equations described before that compose the "L" graph.

Given: A "generic" car with the quarter-mile speed/time of:

```
v = 83 MPH = 121.73333 ft/sec
t = 17.0 seconds.
```

Step \#1:

' $m$ ' has the exact value of 0.4342944819 but the value 0.434
can be used.

Step \#2:
Look along the 'y' axis of the "L" graph at 10*k and scan across until the ' $x$ ' value of the third equation is hit. Looking at $y=1.57$ and scanning the third equation results in ' $x$ ' value being 12. Because of the " $10 *$ " and "0.1*" in the third equation, the ' $x$ ' value is really 10*x. Take the answer from the graph and divide by 10. The solution of the third equation is then $\mathrm{z}=1.2$

Step \#3:
Calculate 'b' via $b=z$ * $t$.
$b=1.2$ * $17=20.4$
Step \#4:
We are now going to compute the 'a' value. For this we need the Wexzal of 'z'.
Using the 'z' value, scan on the ' $x$ ' axis and read the ' $y$ ' axis value for the first equation. There are no multiply/divide factors due to the first equation being un-"biased" by a power of 10 . wzl(1.2) ~ 2.7
From this, we get,
$a=v * w z l(z)=121.73 * 2.7=328.67$
Step \#5:
At this point, we have both the 'a' and 'b' values. Now to compute the T60 value via eqn (13.28). This formula involves logarithms which our calculator doesn't have. But note the denominator is in the form of ' $x$ * $\log (x)$ ' which is the inverse of the Wexzal function. Calculate a/88 and look on the 'y' axis for this value. Scan along 'y' axis until the first function is hit.
Read the ' $x$ ' value.
a/88 = 328.67 / 88 ~ 3.73
The Inverse Wexzal of 3.73 (from graph) is 2.14
Using (13.28) calculate T60.
$\mathrm{T} 60=20.4 / 2.14=9.53$ Seconds
Step \#6:
To find the distance to 60 MPH requires using (13.07).
Calculate T60/b and multiply by 10 . Look for this value on the 'x' axis and look for the ' $y$ ' value of the second equation. Take this result and divide by 100 . Now multiply by (a*b).
$\mathrm{T} 60 / \mathrm{b}=9.53 / 20.4=0.467$
Multiply by 10 gives 4.67. Use 4.7 for Sklar graph as detail
decays for increasing ' $x$ ' values.
Reading second equation gives $y=7.7$
Division by 100 gives 0.077 .
Final answer is:
$\mathrm{X} 60=\mathrm{a} * \mathrm{~b} * \mathrm{~S}(\mathrm{~T} 60 / \mathrm{b})=328.67 * 20.4 * 0.077=516$ feet .

Because of human error when reading graphs, error creeps in. The forgoing problem when run on a programmable calculator give the following results:

$$
\begin{aligned}
& k=0.1572817011 \\
& z=1.204076394 \\
& b=20.4692987
\end{aligned}
$$

$a=334.1967219$
T60 $=9.300694644$
$X 60=503.8147985$
Assuming that the calculator result is "exact" and "correct" the error value for T60 and X60 is 2.47\% and 2.42\%

## CONCLUSION

This chapter examined the mathematical outcome of assuming that a motor vehicle's acceleration can be modelled using a Wexzalic function. This resulted in a method to compute, to within a few percent error, the time and distance required to accelerate from a dead stop to 60 MPH when given the quarter mile speed and time.

There are a few defects with this model:
(1) $D(0)=i n f$. This means that at the start of the acceleration run, the vehicle undergoes infinite acceleration. This is of course not correct. The integral of the acceleration function $D(u)$,

is convergent however.
(2) The theoretic asymptotic velocity is too high. In the sports car example above, the theoretic asymptotic velocity was 438+ ft/sec ~ 300 MPH . For that vehicle, the actual asymptotic velocity is on the order of 200 MPH (293.3 ft/sec). This means that this model cannot be used to extrapolate vehicle behavior past the $1 / 4$ mile mark.
(3) There is no physical justification for the use of Wexzals to model vehicle behavior. The good agreement for distances under $1 / 4$-mile stems from the notion that the Wexzalic function used somehow ties together the effects of engine HP/torque, tire rolling resistance, aerodynamic drag on the vehicle and other secondary non-linear effects into one "tidy" simple equation. The net result is all that this model attempts to simulate.

Today, with the advent of super fast computers and calculators that have the power of 1960's era minicomputers, the study of non-linear effects and models should be expanded. Wexzals might be just one way to describe non-linear behavior of physical systems. 13.01:

Engine/transmission mating is not a simple thing. Many "backyard" mechanics attempt to "beef-up" the performance of their street cars by just simply installing a bigger engine that will fit. This sometimes result in broken transmissions due to the increased torque of the bigger engine. These innocent looking cars, known as "sleepers", are noted for being able to accelerate far quicker than expected; sometimes to the tune of squealing tires and belching flames out the exhaust pipe as the engines are (sometimes) feed too much gasoline. Beware of that beat-up 1972 Toyota Corolla that shakes when idling at a stop light...

### 13.02:

In the U.S.A. the government passed a law requiring that all high performance cars, e.g. Corvette, $300-Z X$, etc, be governed (by mechanical or computer) to a top speed of $155 \mathrm{MPH}(227 \mathrm{ft} / \mathrm{sec})$. Considering that the maximum speed allowed is $65 \mathrm{MPH}(95 \mathrm{ft} / \mathrm{sec}$ ) and that speeds over $85-90 \mathrm{MPH}$ (in most states) result in *large* fines and jail time, it seems pointless to limit a motor vehicle that can travel faster than a small airplane to such a "half-hearted figure". If a limit has to be made, why not something like 90 MPH?

Clever after-market car-parts suppliers have a way to "walk-around" the limit by replacing or re-programming the onboard coomputer. When "uncorked", these vehicles can reach speeds of over 200 MPH.
13.03:

High performance motorcycles like the ZX-11 (which is the most powerful of the "Ninja" series of sportbikes) have become the bane of insurance companies and law makers. This is caused by inexperienced riders purchasing these vehicles and then getting into fatal accidents. Many car drivers are fearful of motorcyclists because of difficulty seeing the motorcycle in traffic and the motorcyclist (sometimes) taking advantage of his better accelerating ability in changing lanes.

Motorcycles are very interesting from the standpoint of the math model under discussion. A middle-sized (in the U.S.A. that means a 750cc) motorcycle can out accelerate all but the fastest cars. Yet most motorcycles average 40 miles to the gallon which is better than all but the most efficient cars. Motorcycles are good; do not pick on them.

## References for Chapter \#13

(1) Mary Alice Grossman - Aerospace engineer for U.S.A.F. Private communication.
(2) Nissan 240 review Road \& Track, September 1988
(3) Nissan 300ZX review Road \& Track, September 1990
(4) ZX-11 review

Motorcyclist, March 1990

## Chapter 14

## Table of Inequalities and Identities

## INTRODUCTION

The following chapters contain tables and charts of formulae and numbers discussed in the body of this work. They represent our current collection of all known (to the authors) facts about Wexzals and related functions.

To save space, we will use a computer-programming-like notation to represent integrals and other formulae. So,

$$
\begin{gathered}
\text { ing[a,b, } f(x) d x]=\left.\right|_{/ a} ^{/ b} f(x) d x \\
i n g[f(x) d x]=\left.\right|_{/} f(x) d x=g(x)+c
\end{gathered}
$$

The following are basic constants used,

```
e = exp(1) = 2.718...
m = log(e) = 0.434...
 i = sqrt(-1)
```

The following functions are,

```
y=\mp@subsup{x}{}{\wedge}x=\operatorname{cxt}(x)\quad\mathrm{ Coupled Exponent}
x=y^y, y=crt(x) Coupled Root
wzl(x) = crt(10^x) Wexzal Function
x=y^ y^y, y=trp(x) Tripled Root
ei(x) = ing[-inf,x,e^u/u du] Exponential Integral
pvr(x) = ing[0,x,u/wzl(e^u) du] "Pulver" (Powder) Integral
gi(x) = ing[1,x,crt(u) du] Coupled Exponent Integra`
wi(x) = ing[0,x,10^u*wzl(u) du]
ri}(x)=1/m*ing[0,x,10^u/wz1(u)du
```

```
ji(x) = 1/m*ing[0,x,wzl(u)/10^u du]
P(x) = ing[dx/(x*wzl(x))] = 1/wz\ (x)-ei{-ln[wzl(x)]}
B(x)= ing[wzl(x)/x dx] = wzl(x)+ei{ln[wzl(x)]}
S(x) = ing[dx/wzl(1/x)] = x/wzl(1/x)+1/m*ei{-2*ln[wzl(1/x)]}
```

For the following, $x, y, v$ are real numbers over the entire real axis unless otherwise restricted.
(01) $\log [w z 7(x)]=x / w z\rceil(x) \quad$ Logarithmic identity
(02) $\mathrm{wzl}\left(x^{\star} 10^{\wedge} x\right)=10^{\wedge} x$
(03) $\log \left\{c x t\left[w z 1(x)^{\wedge} 2\right]\right\}=2 \star x^{*} w z 1(x)$
(04) $x^{\wedge}[x / \log (x)]=10^{\wedge} x$
(05) $\operatorname{sqrt}\left\{\operatorname{cxt}\left[w z 1(x)^{\wedge} 2\right]\right\}=10^{\wedge}\left[x^{\star} w z 1(x)\right]$
(06) $\operatorname{cxt}[w z 7(x)]=10^{\wedge} x$
(07) $\operatorname{cxt}\left(x^{\star} y\right)=\left[y^{\wedge}(x-1) \star \operatorname{cxt}(x)\right]^{\wedge} y^{*} \operatorname{cxt}(y)$
(08) $\operatorname{cxt}\left(x^{\wedge} v\right)=\operatorname{cxt}(x)^{\wedge}\left[v^{*} x^{\wedge}(v-1)\right]$
(09) $\operatorname{cxt}\left[v^{*} \operatorname{crt}(x)\right] / x^{\wedge} v=\operatorname{cxt}(v)^{\wedge} \operatorname{crt}(x), v>0$
(10) $\log (x) / x=\{1+\log [\log (w z 1\{x\})] / \log [w z 1(x)]\} / w z 1(x)$
(11) $\left.\left.\left.10^{\wedge}\{1+\log [\log (w z\rceil\{x\})] / \log [w z\rceil(x)\right]\right\}=x^{\wedge}[w z\rceil(x) / x\right]$
(12) $\log [\operatorname{trp}(x)]=\log (x) / \operatorname{cxt}[\operatorname{trp}(x)]$
(13) wzl $(x)>x$ for $x$ in $[0,10)$
$w z 1(x)=x$ for $x=10$
$w z 1(x)<x$ for $x>10$
(14) $w z l(x)+w z l(y)>w z l(x+y)$ for $x>=0, y>=0$
(15) $\left.v^{*} w z 1(x)>w z\right\rceil\left(v^{*} x\right)$ for $v>1$
$v^{*} w z 1(x)=w z 1\left(v^{*} x\right)$ for $v=1$
$v^{*} w z l(x)<w z l\left(v^{*} x\right)$ for $0<=v<1$
(16) $x^{\wedge} x^{\wedge} x>x^{\wedge} x>\operatorname{crt}\left(x^{\wedge} x^{\wedge} x\right)>\operatorname{crt}(x)^{\wedge} x>x>\operatorname{cxt}[\operatorname{trp}(x)]>\operatorname{trp}\left(x^{\wedge} x\right)$ $\operatorname{trp}\left(x^{\wedge} x\right)>\operatorname{crt}(x)>\operatorname{trp}(x)$ for $x>1 \quad$ The ordering property

## Chapter 15

## Solutions of Equations in Closed Form

(01) $y=x^{\wedge} x, \quad x=\operatorname{crt}(y)$
(02) $y=x * \log (x), x=w z 1(y)$
(03) $y=x^{\star} 10^{\wedge} x, x=y / w z 1(y)$
(04) $y=x^{\wedge} 2^{*} \log (x), x=\operatorname{sqrt}[w z 1(2 * y)]$
(05) $y=x * \log (x)^{\wedge} 2, x=w z 1\left[0.5^{*} \operatorname{sqrt}(y)\right]^{\wedge} 2$
(06) $\left.y=x+\log (x), x=1 \log [w z\rceil\left(10^{\wedge} y\right)\right]$
(07) $\left.y=x+w z\rceil(x), x=1 \log \left\{\operatorname{cxt}\left(0.1^{*} w z\right\rceil(10 * y)\right]\right\}$
(08) $\left.y=x{ }^{*} w z 1(x), x=1 \log \{c x t[\operatorname{sqrt}(w z\rceil\{2 * y\})]\right\}$
(09) $y=x^{\wedge}(1 / x), x=1 / \operatorname{crt}(1 / y)$
(10) $\left.y=x^{\wedge}\left[x^{*} \log (x)\right], x=w z\right\rceil\{0.5 * \operatorname{sqrt}[\log (y)]\}^{\wedge} 2$
(11) $y=x^{\wedge} x^{\wedge} 2, x=\operatorname{sqrt}\{w z 1[2 * \log (y)]\}$
(12) $y=x^{\star} 10^{\wedge} \operatorname{sqrt}(x), \quad x=1 \log \left\{w z 1\left[0.5^{*} \operatorname{sqrt}(y)\right]^{\wedge} 2\right\}^{\wedge} 2$
(13) $x-y^{\wedge}(-x)=0, x=1 / \operatorname{crt}(y)$
(14) $y=\operatorname{crt}(x) * \log (x), x=\operatorname{cxt}\{\operatorname{sqrt}[w z 1(y)]\}$
(15) $y=\operatorname{sqrt}(x) * \log (x), x=w z 1(0.5 * y)^{\wedge} 2$
(16) $1=\operatorname{crt}(x) * \log (x) / \log (y), x=\operatorname{cxt}\left\{\operatorname{sqrt}\left[\operatorname{crt}\left(y^{\wedge} 2\right)\right]\right\}$
(17) $y=x+10^{\wedge} x, x=1 \log \left\{\log \left[w z 1\left(10^{\wedge} y\right)\right]\right\}$
(18) $y=x+x^{*} \log (x), x=0.1^{*} W z 7$ (10^y)
(19) $y=x^{\wedge}\left[x^{\star} \log (x)^{\wedge} 2\right], x=w z 1\left[1 / 3^{*} \log (y)^{\wedge}(1 / 3)\right]^{\wedge} 3$
(20) $\left.y=x^{\wedge}\left[x^{\wedge} 2^{*} \log (x)\right], \quad x=w z\right\rceil\{\operatorname{sqrt}[\log (y)]\}$
(21) $w z 1(x)=y^{\star} x, \quad x=10^{\wedge}(1 / y) / y$
(22) $W z 1(x)=y^{\wedge} x, \quad x=\log \{\operatorname{cxt}[1 / \log (y)]\}$
(23) $\left.w z l(x)=x^{\wedge} y, x=10 g\left\{c x t[w z\rceil(1-1 / y)^{\wedge}\{1 /(1-1 / y)\}\right]\right\}$
(24) $y=x^{\wedge} 2^{\star} w z 7(x), \quad x=10 g\left\{c x t\left[w z 1\left(3 / 2^{\star} \operatorname{sqrt}[y]\right)^{\wedge}(2 / 3)\right]\right\}$
(25) $y=x * W z 1(x)^{\wedge} 2, \quad x=10 g\left\{c x t\left[w z 1(3 * y)^{\wedge}(1 / 3)\right]\right\}$
(26) $\left.y=x^{\wedge} 2 / w z 1(x)=x^{*} \log [w z 1(x)], \quad x=1 \log \left\{\operatorname{cxt}[w z\rceil\left(0.5^{*} \operatorname{sqrt}\{y\}\right)^{\wedge} 2\right]\right\}$
(27) $y=w z 1(x)^{\wedge} x, \quad x=1 \log \left\{\operatorname{cxt}\left[w z 1\left(0.5^{*} \operatorname{sqrt}[\log \{y\}]\right)^{\wedge} 2\right]\right\}$
(28) $\left.y=\operatorname{crt}(x)^{\wedge} \log (x), x=\operatorname{cxt}[w z\rceil(0.5 * s q r t[\log \{y\}])^{\wedge} 2\right]$
(29) $y=x^{\wedge} x^{\star} 10^{\wedge} x, x=0.1^{*} w z 1[10 * 1 \log (y)]$
(30) $y=\operatorname{sqrt}(x)^{\wedge} x, \quad x=w z 1[2 * \log (y)]$
(31) $y=(2 * x)^{\wedge} x, \quad x=0.5^{*} w z 1[2 * \log (y)]$
(32) $y=x^{\wedge} \operatorname{sqrt}(x), x=\operatorname{crt}[\operatorname{sqrt}(y)]^{\wedge 2}$
(33) $y=x^{*} 10^{\wedge} x+\log (x), x=1 \log \left[\operatorname{trp}\left(10^{\wedge} 10^{\wedge} y\right)\right]$
(34) $y=x^{\wedge} x^{\star} e^{\wedge} x, x=1 / e^{\star} w z 1\left[e^{*} \log (y)\right]$
(35) $\left.y=x^{*} e^{\wedge} \operatorname{crt}(x), x=\operatorname{cxt}\left\{1 / e^{*} w z\right]\left[e^{*} \log (y)\right]\right\}$
(36) $y=10^{\wedge} x^{*} e^{\wedge} w z 1(x), \quad x=\log \left\{c x t\left[1 / e^{\star} w z 7\left(e^{*} \log \{y\}\right)\right]\right\}$
(37) $y=1 / w z 1(1 / x)=y * x, x=1 /\left(y * 10^{\wedge} y\right)$
(38) $y=1 / w z\rceil(1 / x)=x^{\wedge} y, x=1 /\left\{\log \left[\operatorname{cxt}(w z\rceil\{1-1 / y\}^{\wedge}[1 /(1-1 / y)]\right)\right\}$
(39) $y=x^{*} 10^{\wedge} x / w z 1(x), x=1 \log \left\{c x t\left[\operatorname{trp}\left(10^{\wedge} y\right)\right]\right\}$
(40) $y=w z 1(x)^{\wedge}\left(10^{\wedge} x\right), x=1 \log \{\operatorname{cxt}[\operatorname{trp}(y)]\}$
(41) $y=x * \log (x) / \operatorname{crt}(x), x=\operatorname{cxt}[\operatorname{trp}(10 \wedge y)]$
(42) $y=x^{*} \ln (x)+x, x=1 / e^{*} w z 1\left(m * e^{*} y\right)$
(43) $y=c^{\wedge} x, x=c^{\wedge} y, y=x @ x=1 / \operatorname{crt}(1 / c)$
(44) $y=x * \log (x)^{\wedge} 2+x^{*} \log (x) * \log [\log (x)], x=w z 1[w z 1(y)]$
(45) $y=x-w z 1(x), x=y+10 * w z 1$ (0.1*y)
(46) $y=x * \log (x)-x, \quad x=10 * w z 1$ (0.1*y)
(47) $y=x^{\wedge} x / 10^{\wedge} x, x=10 \star$ wz $1\left[0.1^{*} \log (y)\right]$
(48) $y=10 g(x) / \operatorname{crt}(x), x=\operatorname{cxt}\left(10^{\wedge} y\right)$
(49) $\left(10^{\wedge} x\right)^{\wedge} y=x^{\wedge} x, x=10^{\wedge} y$
(50) $y=x * w z 1(1 / x), x=y / 10^{\wedge}(1 / y)$
(51) $\operatorname{wzl}(x)=x^{\wedge} x, x=\operatorname{trp}(10)=1.923584036 \ldots$
(52) $\log (x)=1 / x, x=\operatorname{crt}(10)=2.50618414559 \ldots$

## Chapter 16

## Integrals Given in Closed Form

(01) $\operatorname{ing}[w z 1(x) d x]=0.5 * x * w z 1(x)+m / 4 *\left[w z 1(x)^{\wedge} 2-1\right]+c$
(02) $\operatorname{ing}[d x / w z 1(1 / x)]=x / w z 1(1 / x)+1 / m * \operatorname{ei}\{-2 * \ln [w z 1(1 / x)]\}+c=S(x)+c$
(03) $\operatorname{ing}\{\operatorname{ing}[0, x, d u / w z 1(1 / u)] d x\}=$
$\left.\left.x^{\wedge} 2 / w z\right\rceil(1 / x)+x / m^{\star} e i\left\{-2^{*} 7 n[w z\rceil(1 / x)\right]\right\}+1 / m^{\wedge} 2^{\star}\left\{m^{\star} x /\left[2^{\star} w z 7(1 / x)^{\wedge} 2\right]^{*}\right.$ $\left[1-m^{*} x^{*}\right.$ wzl $\left.\left.(1 / x)\right]+3 / 2^{*} \operatorname{ei}\left[-3 / m^{\star} 1 /\left[x^{*} w z 1(1 / x)\right]\right]\right\}+c$
(04) $\operatorname{ing}[w z l(x) / x d x]=w z l(x)+e i\{\ln [w z l(x)]\}+c=B(x)+c$
(05) $\operatorname{ing}\left[d x /\left(x^{*} w z 1(x)\right)\right]=1 / w z 1(x)-e i\{-\ln [w z 1(x)]\}+c=-P(x)+c$
(06) $\operatorname{ing}[\mathrm{Wz} 7(1 / x) d x]=1 / m *\{1 / \ln [w z 1(1 / x)]-\ln [\ln (w z\urcorner\{x\})]\}+c$
(07) $\operatorname{ing}[P(x) d x]=x * P(x)+x / w z 1(x) *\{1+x /[2 * m * w z 1(x)]\}+c$
(08) $\operatorname{ing}[P(1 / x) d x]=x * P(1 / x)-x / w z\rceil(1 / x)-1 / m * e i\{-2 * \ln [w z 1(1 / x)]\}+c$
(09) ing[ei $\{-\ln [w z 7(x)]\} d x]=-x * P(x)+c$
(10) $\operatorname{ing}[P(x * \log (x)) d x]=\ln (x)+\ln [\ln (x)]+0.577216-x^{*} e i[-\ln (x)]+c$
(11) $\operatorname{ing}[P(x) /\{m+x / w z\rceil(x)\} d x]=P(x) * w z 1(x)+\ln (x)+c$
(12) $\operatorname{ing}\left[x^{*} P(x) d x\right]=0.5 *\left\{x^{\wedge} 2^{*} p(x)+x^{\wedge} 2 / w z 1(x)-\left[m^{\star} x-m^{\wedge} 2^{*}(w z 1(x)-1)\right]\right\}+c$
(13) $\operatorname{ing}[x * P(1 / x) d x]=$ $0.5^{*}\left\{x^{\wedge} 2 * P(1 / x)+1 / m^{\wedge} 2^{\star}\left\{m^{*} x /\left[2^{*} w z\right\rceil(1 / x)^{\wedge} 2\right] *\left[1-m^{\star} x^{*} w z\right\rceil(1 / x)\right]+$ 3/2*ei[-3/(m*x*wzl(1/x))]\}\}+c
(14) $\left.\operatorname{ing}[\operatorname{ei}\{-\ln [w z](x)]\} / x^{\wedge} 3 d x\right]=$
$\left.0.5 / x^{\wedge} 2^{\star}\{1 / \mathrm{wz}](x)-\mathrm{ei}[-1 \ln (w z l(x))]\right\}+1.5 / \mathrm{m}^{\wedge} 2^{\star}\left\{m /\left[2^{\star} x^{\star} \mathrm{wz} 7(x)^{\wedge} 2\right] *\right.$ $\left.\left[1-m^{*} w z l(x) / x\right]+3 / 2 * e i[-3 * x /(m * w z l(x))]\right\}+c$
(15) $\operatorname{ing}[x / w z 1(1 / x) d x]=$
$-1 / m^{\wedge} 2 *\left\{m^{*} x /\left(2 * W z 1(1 / x)^{\wedge} 2\right) *\left[1-m^{*} x^{*} w z 1(1 / x)\right]+3 / 2^{*}\right.$
ei $[-3 / m * 1 /(x * w z 1(1 / x))]\}+c$
(16) $\operatorname{ing}\left[d x /\left(x^{\wedge} 3^{\star} w z l(x)\right)\right]=$
$1 / m^{\wedge} 2^{\star}\left\{m /\left[2 * w z 1(x)^{\wedge} 2 * x\right] *[1-m * w z 1(x) / x]+3 / 2 * e i[-3 * x /(m * w z 1(x))]\right\}+c$
(17) $\operatorname{ing}[w z 1(1 / x) / x d x]=-\{w z 1(1 / x)+e i[\ln (w z 1(1 / x))]\}+c$
(18) $\operatorname{ing}\left[x^{*}\right.$ wzl $\left.(1 / x) d x\right]=$
$1 / m^{\wedge} 2 \star\left\{0.5 *\left[\left(m^{\star} x\right)^{\wedge} 2{ }^{*} w z 7(1 / x)+m * x+e i\{-7 n[w z 1(1 / x)]\}\right]\right\}+c$
(19) $\operatorname{ing}[\operatorname{crt}(x) d x]=x^{*} \operatorname{crt}(x)-1-\operatorname{gi}[\operatorname{crt}(x)]+c$
(20) $\operatorname{ing}\left[d x /\left(x^{*} \operatorname{crt}(x)^{\wedge} 2\right)\right]=\{-\ln [\operatorname{crt}(x)]-2\} / \operatorname{crt}(x)+c$
(21) $\operatorname{ing}[\log \{c x t[w z 1(x) * w z 1(1 / x)]\} d x]=$
$1 / m^{\wedge} 2^{*}\left\{0.5^{*}\left[\left(m^{*} x\right)^{\wedge} 2^{*} w z 1(1 / x)+m^{*} x+e i\{-\ln [w z 1(1 / x)]\}\right]\right\}+w z 1(x)+$ ei $\{\ln [w z 1(x)]\}+c$
(22) ing[log[wz1(x)*wz1(1/x)]dx]= $x^{\wedge} 2 / w z 1(x)-\left[m^{*} x-m^{\wedge} 2^{*}(w z 1(x)-1)\right]+1 / w z 1(1 / x)-e i\{-1 n[w z 1(1 / x)]\}+c$
(23) $\operatorname{ing}\left[d x /\left(x^{*} w z 1(1 / x)\right)\right]=1 / w z 1(1 / x)-e i\{-\ln [w z 1(1 / x)]\}+c$
(24) $\left.\left.\operatorname{ing}\left[w z 7(x)^{\wedge} 2 / x d x\right]=e i\{2 *\rceil n[w z\rceil(x)\right]\right\}+0.5 * w z 7(x)^{\wedge} 2+c$
(25) ing[log(x)*wzl(x) dx] =

A* $\log (x)-m *\left\{0.5 * A+m / 4 *\{\right.$ ei $\left.[2 * \ln (w z 1(x))]\}+0.5 * w z 1(x)^{\wedge} 2-\ln (x)\right\}+c$ where $A=i n g[0, x, w z\rceil(u) d u]$ See Integral \#1
(26) $\mathrm{ing}\left[\mathrm{dx} / \mathrm{wz} 7(\mathrm{x})^{\wedge} 3\right]=-1 /\left[2 * w z 1(x)^{\wedge} 2\right] *[3 * m / 2+x / w z 1(x)]+c$
(27) ing[dx/wzl $\left.(x)^{\wedge} 4\right]=-m /\left[3^{*} w z 1(x)^{\wedge} 3\right] *[x /(m * w z 1(x))+4 / 3]+c$
(28) $\operatorname{ing}[\operatorname{crt}(x) / x d x]=0.5^{*} 1 n(x) * \operatorname{crt}(x)+0.25 *\left[\operatorname{crt}(x)^{\wedge} 2-1\right]+c$
(29) $\operatorname{ing}\left[0.5^{*} \operatorname{sqrt}\left\{2 * \log \left[w z 1\left(2 * 100^{\wedge} x\right)\right]\right\} d x\right]=$ $1 / 12 * T \wedge 3+m / 2 * T+c$ where $T=\operatorname{sqrt}\left\{2 * \log \left[w z 1\left(2 * 100^{\wedge} \times\right)\right]\right\}$
(30) $\operatorname{ing}\left[\mathrm{dx} /\left(x^{\star} \operatorname{crt}(x)\right)\right]=\ln (x) / \operatorname{crt}(x) *[1+\ln (x) /(2 * \operatorname{crt}(x))]+c$

(32) $\operatorname{ing}\left[d x /\left(x+x^{\wedge} 2 / w z 1\left(m^{*} x\right)\right)\right]=\ln (x)-x / w z 1(m * x)+c$
(33) $\operatorname{ing}[d x /(1+\ln [\operatorname{crt}(x)])]=x^{*} \operatorname{crt}(x)-1 / m * w i[\log (x)]+c$
(34) ing[x*wz1 (x) dx] =
$\left.\left.\left.1 / 3 * w z\rceil(x)^{\wedge} 3^{*}\{m *[x / w z\rceil(x)-m / 3]+(x / w z\rceil(x)\right)^{\wedge} 2-2 / 3 * m *[x / w z\rceil(x)-m / 3\right]\right\}+c$
(35) $\operatorname{ing}\left[w z 1(0.5 * \operatorname{sqrt}(x))^{\wedge} 2 d x\right]=$
$x^{*}$ wzl (0.5*sqrt(x))^2-\{0.5*wz1(0.5*sqrt(x))^4*[x/wz1(0.5*sqrt(x))^2-
$\left.\left.m^{*} \operatorname{sqrt}(x) / w z 7(0.5 * s q r t(x))^{\wedge} 2+m^{\wedge} 2 / 2\right]-m^{\wedge} 2 / 4\right\}+c$
(36) $\operatorname{ing}[\operatorname{sqrt}(w z 1(2 * x)) d x]=$
$x^{*} \operatorname{sqrt}[w z 1(2 * x)]-\left\{w z 1(2 * x)^{\wedge} 1.5 / 3 *[x / w z 1(2 * x)-m / 3]+m / 9\right\}+c$
(37) $\operatorname{ing}[x / w z 1(x) d x]=x^{\wedge} 2 / w z 1(x)-\left\{m^{\star} x-m^{\wedge} 2^{\star}[w z 1(x)-1]\right\}+c$
(38) $\operatorname{ing}[d x / w z 1(x)]=x / w z 1(x) *[1+x /(2 * m * w z 1(x))]+c$
(39) $\operatorname{ing}\left[w z 1(x)^{\wedge} 2 d x\right]=x^{\star} w z 7(x)^{\wedge} 2-\left\{w z 1(x)^{\wedge} 3 / 3 *[2 * x / w z 1(x)-2 / 3 * m]+2 / 9 * m\right\}+c$
(40) ing[dx/sqrt(wz1(x))] = 2*m*sqrt[wz1(x)]*[1n(wz1(x))-1]+c
(41) $\operatorname{ing}\left[W z 1(x) / x^{\wedge} 2 d x\right]=1 / m *\{\ln (\ln (w z 1(x)))-1 / \ln [w z 1(x)]\}+c$
(42) $\operatorname{ing}\left[w z l(x) / x^{\wedge} 3 d x\right]=1 / m^{\wedge} 2^{*}\left\{-0.5^{*}\left[m^{\wedge} 2 * w z 1(x) / m^{\wedge} 2+m / x+e i\{-1 n[w z l(x)]\}\right]\right\}+c$
(43) $\operatorname{ing}\left[\log \left(w z 1\left(10^{\wedge} x\right)\right) d x\right]=\log \left[w z 1\left(10^{\wedge} x\right)\right] *\left\{0.5^{*} \log \left[w z 1\left(10^{\wedge} x\right)\right]+m\right\}+c$
(44) ing[dx/crt(x)] = ri[log(x)]+c
(45) $\left.\operatorname{ing}\left[d x / x^{\wedge} x\right]=x / x^{\wedge} x+j i\left[x^{*}\right] \log (x)\right]+c$
(46) $\operatorname{ing}\left[(w z 1(x) / x)^{\wedge} 2 d x\right]=2 / m * e i\{\ln [w z 1(x)]\}-w z 1(x)^{\wedge} 2 / x+c$
(47) $\operatorname{ing}[B(x) d x]=0.5 * x^{*} w z 1(x)-m / 4 *\left[1+w z 1(x)^{\wedge} 2\right]+x^{*} e i\{1 n[w z 1(x)]\}+c$
(48) $\left.\operatorname{ing}[e i\{\ln [w z\rceil(1 / x)]\} d x]=x^{\star}\{\operatorname{ei}\{\ln [w z 1(1 / x)]\}+w z\rceil(1 / x)\right\}+c$
(49) $\operatorname{ing}[-e i\{-\ln [w z\rceil(1 / x)]\} d x]=$
$-x * e i\{-1 n[w z 1(1 / x)]\}+1 / m *\{-m * x / w z 1(1 / x)-2 * e i\{-2 * 1 n[w z 1(1 / x)]\}\}+c$
(50) $\left.\left.\operatorname{ing}[\operatorname{ei}\{\ln [w z\rceil(x)]\} d x]=x^{\star} \operatorname{ei}\{\ln [w z\rceil(x)]\right\}-m / 2 * w z\right\rceil(x)^{\wedge} 2+c$
(51) $\operatorname{ing}[-e i\{-\ln [w z\rceil(x)]\} d x]=x * P(x)+c$
(52) $\operatorname{ing}[\operatorname{sqrt(wzl(1/x))~dx]=}$

1/m*\{-1/[sqrt(wzl(1/x))*1n(wzl(1/x))]+0.5*ei\{-0.5*]n[wz1(1/x)]\}\}+c
(53) $\operatorname{ing}[\operatorname{ei}\{-2 * \ln [w z 1(1 / x)]\} d x]=m / w z 1(x)+x^{*} e i\{-2 * 1 n[w z 1(x)]\}+c$
(54) $\operatorname{ing}\left[P(x) / x^{\wedge} 2 d x\right]=1 /\left[x^{\star} w z 1(x)\right]-P(x) / x+1 / m * e j\{-2 * \ln [w z 1(x)]\}+c$
(55) $\operatorname{ing}[P(x) / x d x]=\ln (x) * \operatorname{pvr}(x)+\operatorname{pvr}[\ln (x)]+c$
(56) $\operatorname{ing}[S(1 / x) d x]=x * S(1 / x)-P(x)+c$
(57) $\operatorname{ing}[P(1 / x) d x]=x * P(1 / x)-S(x)+c$
(58) $\operatorname{ing}[\operatorname{sqrt}(w z 7(x)) d x]=m^{*}\left\{\left[2 / 9+2 / 3^{*} \ln (w z 7(x))\right] * e^{\wedge}\left[3 / 2^{*} \ln (w z 7(x))\right]\right\}+c$

## Chapter 17

## Asymptotics and Limits

(01) $\mathrm{wzl}(x) \sim x / \log (x)$
(02) $\left.\operatorname{trp}\left(10^{\wedge} x\right) \sim 1+\operatorname{crt}\left\{x /\left[e^{\star}\right] \log (x)\right]\right\}$
(03) $\left.y=x!, \quad x \sim e^{*} w z 1\left\{1 / e^{\star}\right] \log \left[y / \operatorname{sqrt}\left(2^{\star} p i\right)\right]\right\}-0.5$
(04) $\operatorname{crt}(x!) \sim x^{*}[1-1 / \ln (x)]$
(05) $d[w z\rceil(x)] / d x=1 /[m+x / w z\rceil(x)] \sim w z l(x) / x \sim 1 / \log (x)$
(06) $w z 1(x+1) \sim w z 1(x) * e^{\wedge}\{1 / w z 1(x) * d[w z 1(x)] / d x\}$

(08) $\lim \left\{\operatorname{wzl}(x)^{\wedge}[d(w z 1(x)) / d x]\right\}=10$
x->inf
(09) $w z l(1 / x) \sim 1+1 /\left(m^{*} x\right)-0.5 /\left(m^{*} x\right)^{\wedge} 2+(2 / 3) /\left(m^{*} x\right)^{\wedge} 3+\ldots$
(10) $1 / m * e i\{-2 * 1 n[w z 1(1 / x)]\} \sim 4.845549226-\ln (x) / m-10.60379622 / x$
(11) $y=(2 * x)!/ x!, x \sim e / 4 * \operatorname{crt}\left\{[y / \operatorname{sqrt}(2)]^{\wedge}(4 / e)\right\}$
(12) $P(1 / x) \sim-0.4112481102+\ln (x)+1 /(m \star x)-3.976 / x^{\wedge} 2+10.85 / x^{\wedge} 3+\ldots$
(13) $1 * 4 * 27 * 256 * \ldots n \sim 1.2824271 *_{n} \wedge\left(n^{\wedge} 2 / 2+n / 2+1 / 12\right) / e^{\wedge}\left(n^{\wedge} 2 / 4\right)$
(14) $\operatorname{trp}\left(x^{\wedge} x\right) \sim 1+\operatorname{crt}\left\{x / e^{\star}[1-1 / \operatorname{crt}(x)]\right\}$
(15) $\log [w z 1(x+1)] \sim x / w z 1(x)+1 /[x / m+w z 1(x)]$
(16) $\operatorname{crt}\left(2^{*} x\right) / \operatorname{crt}(x) \sim 1+\log (2) /\left[m^{*} \operatorname{crt}(x)+\log (x)\right]$
(17) $\log \{w z 1[x+1 \log (x)]\} \sim(m+x) / w z 1(x)$
(18) $w z\rceil[x+\log (x)] \sim w z\rceil(x)+1$
(19) $\operatorname{crt}\left[x^{\wedge}(x+1)\right] \sim x+1 /[1+1 / \ln (x)]$
(20) $\operatorname{crt}\left[\operatorname{crt}\left(x^{\wedge} x^{\wedge} x\right)\right] \sim x-1+1 /[1+\ln (x-1)] \sim x-1$
(21) $\operatorname{crt}\{w z 1[f(x)]\} \sim \operatorname{crt}[f(x)]-1$ such that $f(x)>=1$ for all $x$, $f(\inf )=i n f$
(22) $\operatorname{trp}\left[\operatorname{cxt}\left(x^{\wedge} x\right)\right] \sim x+1 /[1+1 / \ln (x)] \sim x+1$
(23) $w z 1\left(x^{\wedge} 2+x\right) \sim w z 1\left(x^{\wedge} 2\right)+x /\left[2^{*} \log (x)\right]$
(24) $W z 1\left[x^{\wedge} x^{*} \log (x)\right] \sim x^{\wedge} x / x^{*}[1+1 / x]$
(25) $W z 1\left[x^{*} \log (x)^{\wedge} 2\right] \sim x^{*} \log (x) / e^{\wedge}\left\{2^{*} \log [\log (x)] / \log (x)\right\}$
(26) $\log [w z 1(10 * x)] \sim x / w z 1(x)+1 /[1+m * w z 1(x) / x] \sim 1+x / w z 1(x)$
(27) $\operatorname{cxt}(x+1) / \operatorname{cxt}(x) \sim e / 2+e^{\star} x-e /(24 * x)+e /\left(48 \star x^{\wedge} 2\right) \sim e^{*} x+e / 2$
(28) $[1 / w z 1(1 /(2 * x))] /[1 / w z 1(1 / x)] \sim 1+1 /\left(2 * m^{*} x\right)-5 /\left[8^{*}\left(m^{*} x\right)^{\wedge} 2\right]+\ldots$
(29) $1 / w z 1(1 / x)^{\wedge} 2 \sim 1-2 /\left(m^{*} x\right)+4 /\left(m^{*} x\right)^{\wedge} 2-25 /\left[3 *\left(m^{*} x\right)^{\wedge} 3\right]+\ldots$
(30) $\operatorname{crt}(1+1 / x) \sim 1+1 / x-1 / x^{\wedge} 2+3 /\left(2 * x^{\wedge} 3\right)+\ldots$
(31) $\operatorname{trp}(1+1 / x) \sim 1+1 / x-1 / x^{\wedge} 2+3 /\left(2^{\star} x^{\wedge} 3\right)+7 /\left(6 * x^{\wedge} 4\right)+\ldots$
(32) $1 / w z 1[1 /(x+1)] \sim 1 / w z 1(1 / x) \star\left[1+1 /\left(m^{\star} x^{\wedge} 2\right)-(m+2) /\left(m^{\wedge} 2^{*} x^{\wedge} 3\right)+\ldots\right]$
(33) $1 / w z 1(1 / x) \sim 1-1 /\left(m^{*} x\right)+3 /\left[2 *\left(m^{*} x\right)^{\wedge} 2\right]-8 /\left[3 *\left(m^{*} x\right)^{\wedge} 3\right]+\ldots$
(34) $y(x)=\log \left[\operatorname{wz}\left(10^{\wedge} x\right)\right] \sim x-\log (x), \quad y(-x) \sim 1 /\left[1 / m+10^{\wedge} x\right]$
(35) $y(x)=x^{\wedge} x / x \sim e^{\star} \operatorname{cxt}(x-1), y(1 / x) \sim x-\ln (x)$, $x 1 \sim 1+\operatorname{crt}(y / e), \quad x 2 \sim 1 /\{y+\ln [y+\ln (y)]\}$
(36) $y(x)=x^{\wedge} x^{*} x \sim 1 / e^{*} \operatorname{cxt}(x+1), x \sim \operatorname{crt}\left(e^{*} y\right)-1$
(37) $y=w z\rceil(x) * \log (x), x \sim y /\{1+\log [\log (y / \log (y))] / \log (y / \log (y))\}$
(38) $y=(x+1)^{\wedge} x \sim e^{*} \operatorname{cxt}(x), x \sim \operatorname{crt}(y / e)$
(39) $y=x^{\wedge} 2+\log (x), x=0.5 * \operatorname{sqrt}\left\{2 * \log \left[w z 1\left(2 * 100^{\wedge} y\right)\right]\right\} \sim \operatorname{sqrt}(y)$

(41) $y=x^{\star} 10^{\wedge}\left(x^{\wedge} 2\right), x=\operatorname{sqrt}\left\{0.5^{*} \log \left[w z 1\left(2 * y^{\wedge} 2\right)\right]\right\} \sim \operatorname{sqrt}[\log (y)]$
(42) $y(x)=w z l(x) / x \sim 1 / \log (x), y(1 / x) \sim 1 / m+x$
(43) $\operatorname{wzl}\left\{\operatorname{sqrt}\left[x^{*} \log (x)\right]\right\} \sim \operatorname{sqrt}[\operatorname{wzl}(4 * x)]$
(44) $w z l\left(v^{*} x\right) \sim v^{*} w z l(x)$, for $v>0$
(45) wzl[0.5*sqrt(x)] ~ wzl(x)/log(x)
(46) $2^{*} \log \left\{W z 1\left[0.5^{*} 10^{\wedge}(x / 2)\right]\right\} \sim x-2^{*} \log (x)$
(47) $W Z \not \subset\left\{\left[x^{*} \log (x)\right]^{\wedge} v\right\} \sim x^{\wedge} v / v^{*} \log (x)^{\wedge}(v-1)$, for $v>0$
(48) $W Z 1\left(x^{\wedge} v^{*} 10^{\wedge} x\right) \sim x^{\wedge}(v-1) * 10^{\wedge} x$, for $v>0$
(49) $w z 1\left[x^{\wedge} v^{*} \log (x)\right] \sim x^{\wedge} v / v$, for $v>0$
(50) $\log \left[w z 1\left(x^{\wedge} v\right)\right] \sim v^{*} \log [w z 1(x)]$, for $v>0$
(51) $w z 1(x+y)-w z 1(x)=C, y \sim C /\{d[w z 1(x)] / d x\}$
(52) $\lim P(x) *_{W Z 1}(x)+\ln (x)=1$-gamma- $\ln [\ln (10)]=-0.4112481102$ $x->0$
(53) $S(x) \sim x+2.542964134-\ln (x) / m-7.95285 / x+16.277 / x^{\wedge} 2$
(54) $f(x)=i n g\left[1, e^{\wedge} x, w z 1(u) / u d u\right] \sim e^{\wedge} x^{\star}\left[1 /\left(m^{*} x\right)+(0.382+\ln (x) / m) / x^{\wedge} 2\right]$
(55) $f(1 / x) \sim w Z 1(1) / x+0.600 / x^{\wedge} 2+0.15 / x^{\wedge} 3+0.027 / x^{\wedge} 4+0.0044 / x^{\wedge} 5+\ldots$
(56) $B(1 / x) \sim 2.41124811-\ln (x)+1 /(m * x)$
(57) ing[0,x,u/wz1(1/u)du] ~ x^2/2-x/m-10.68221448+7.952847*1n(x)+32.55/x
(58) $\operatorname{ing}[0, x, S(u) d u] \sim x^{\wedge} 2-1 / m^{\star}[-2.104395291+1 n(x)] \star x+2.729367-7.95 * \ln (x)$
(59) $1 / \mathrm{m}^{*}$ ing[1/x,inf,wzl(u)/10^u du] $\sim 1.70417-1 /\left(m^{*} x\right)+4.069 / x^{\wedge} 3$
(60) $\operatorname{ing}\left[1+1 / x, \inf , d u / u^{\wedge} u\right] \sim 0.70416996-1 / x+1 /\left(2^{*} x^{\wedge} 2\right)-1 /\left(8 * x^{\wedge} 4\right)+\ldots$
(61) $1 / x^{*} \operatorname{ing}\left[1, e^{\wedge} \times, d u /\left(u^{\star} w z 1(u)\right)\right] \sim P(1) / x+1 / e^{\wedge} x^{\star}\left[-m-m^{\star}(\{1.8-\ln (x)\} / x)\right]$
(62) $\operatorname{pvr}(1 / x) \sim 0.19951 / x^{\wedge} 2-0.06368652 / x^{\wedge} 3+0.0049487 / x^{\wedge} 4+\ldots$
(63) ing[x,inf,[wz1(1/u)-1]/wz1(u)du] ~P(x)/m-S(1/x)/(2*m^2)
(64) $S(1 / x) \sim 1 /\left[2{ }^{*} x^{*} w Z 1(x)\right]$
(65) Laplace transform of $w z 1\left(m^{*} x\right) \sim 1 / s+1 / s^{\wedge} 2-1 / s^{\wedge} 3+4 / s^{\wedge} 4-27 / s^{\wedge} 5+256 / s^{\wedge} 6+\ldots$
(66) $P(x) * W z 1(x)+\ln (x) \sim 1+\ln (x)$
(67) ing[0, x, $\left.u^{* P}(u) d u\right] \sim x^{\wedge} 2 / w z 7(x)$
(68) $y=g i(x) \sim x^{\wedge} x /[1+7 n(x)], \quad x \sim \operatorname{crt}\{y *[1+7 n(\operatorname{crt}(y))]\}$
(69) $\mathrm{wi}(x) \sim 10^{\wedge} x^{*}\left\{m^{\star} w z 1(x)-m^{\wedge} 2 /[m+x / w z 7(x)]-m^{\wedge} 4 / w z 1(x) *[1 /(m+x / w z 7(x))]^{\wedge} 3\right\}$
(70) $w(1 / x) \sim 1 / x+1 /\left(m^{\star} x^{\wedge} 2\right)+1 /\left(3 \star m^{\wedge} 2^{\star} x^{\wedge} 3\right)+5 /\left(24 * m^{\wedge} 3^{*} x^{\wedge} 4\right)+\ldots$
(71) ing[0,1/x,wzl(u)du] ~ $1 / x+1 /\left(2 \star m * x^{\wedge} 2\right)+\ldots$
(72) ing[0,x,wz1(u)du] ~0.5*x*wz1 (x)
(73) $P(x) \sim 1 / w z 7(x)+m / x^{*}[1-1 / \ln (x)]$
(74) $\operatorname{ing}\left[x, \inf , d u / u^{\wedge} u\right] \sim 1 /\left[x^{\wedge} x^{*}(1+\ln (x))\right] *\left\{1-1 /\left[x^{*}(1+\ln (x))\right]\right\}$
(75) ing[x,inf,wz1(u)/10^udu] ~ m*wzl (x)*[1+1/(x/m+wzl(x))]

## Chapter 18

## Special Values

(01) $\mathrm{Wzl}(1)=2.50618414559$
(02) $1 / w z 1(1)=10 g[w z 1(1)]=0.39901297826$
(03) $\operatorname{trp}(10)=1.9235840364$
(04) $P(1)=0.650886653739$
$(05) B(1)=4.18021883536$
$(06) S(1)=0.257713187868$
(07) ing[0,1,crt(1/x) dx] = ing[1,inf,crt(x)/x^2dx]=ji(inf)= $1+i n g\left[1, i n f, d x / x^{\wedge} x\right]=1.7041699552$
(08) $\operatorname{ing}[0,1, d x / \operatorname{crt}(1 / x)]=\operatorname{ing}\left[0, i n f, d x /\left(e^{\wedge} x^{*}{ }^{*} Z 1\left(m^{*} x\right)\right)\right]=0.6465032$
(09) $1 / m * i n g\left[0, i n f, d x / w z 1(x)^{\wedge} v\right]=v /(v-1)^{\wedge} 2$ such that $v>1$
(10) $\operatorname{ing}\left[1, \inf , \mathrm{dx} /\left(x^{*} \operatorname{crt}(x)^{\wedge} 2\right)\right]=2$
(11) $B(x)=0, x=0.0758335698276$
(12) $\operatorname{ing}[\mathrm{wz} 1(1 / x) d x]=1 / m *\{1 / \ln [w z 1(1 / x)]-\ln [\ln (w z 1(1 / x))]\}=0, x=0.2239497283$
(13) $\left.\left.\operatorname{ing}[1, \inf , \mathrm{wz}](1 / x) / x^{\wedge} 2 d x\right]=\operatorname{ing}[0,1, w z](x) d x\right]=1.826464908$
(14) $\operatorname{pvr}($ inf $)=\operatorname{ing}[1, \inf , P(x) / x d x]=0.936276967$

X	wz1 (x)	$\operatorname{crt}(\mathrm{x})$	$\operatorname{trp}(\mathrm{x})$
1.00	2.506184146	1.000000000	1.000000000
2.00	3.597285024	1.559610469	1.476684337
3.00	4.555535705	1.825455023	1.635078475
4.00	5.438582696	2.000000000	1.722191913
5.00	6.270919556	2.129372483	1.780037839
6.00	7.065796728	2.231828624	1.822418026
7.00	7.831389512	2.316454959	1.855404429
8.00	8.573184508	2.388423484	1.882153976
9.00	9.295086900	2.450953928	1.904497853
10.00	10.00000000	2.506184146	1.923584036
11.00	10.69015604	2.555604612	1.940175270
12.00	11.36731780	2.600295000	1.954801771
13.00	12.03290801	2.641061916	1.967845700
14.00	12.68809590	2.678523486	1.979590786
15.00	13.33385721	2.713163604	1.990252953
16.00	13.97101690	2.745368024	2.000000000
17.00	14.60028043	2.775449105	2.008964691
18.00	15.22225700	2.803663246	2.017253720
19.00	15.83747737	2.830223438	2.024954010
20.00	16.44640751	2.855308503	2.032137232
21.00	17.04945935	2.879069993	2.038863121
22.00	17.64699933	2.901637447	2.045181942
23.00	18.23935530	2.923122436	2.051136359
24.00	18.82682201	2.943621727	2.056762871
25.00	19.40966577	2.963219775	2.062092922
26.00	19.98812819	2.981990722	2.067153779
27.00	20.56242932	3.000000000	2.071969229
28.00	21.13277033	3.017305639	2.076560138
29.00	21.69933575	3.033959336	2.080944900
30.00	22.26229534	3.050007342	2.085139807
31.00	22.82180578	3.065491199	2.089159355
32.00	23.37801202	3.080448350	2.093016489
33.00	23.93104852	3.094912663	2.096722817
34.00	24.48104031	3.108914870	2.100288785
35.00	25.02810389	3.122482939	2.103723821
36.00	25.57234809	3.135642394	2.107036464
37.00	26.11387469	3.148416593	2.110234471
38.00	26.65277915	3.160826963	2.113324904
39.00	27.18915109	3.172893208	2.116314215
40.00	27.72307482	3.184633484	2.119208308
41.00	28.25462977	3.196064562	2.122012601
42.00	28.78389089	3.207201961	2.124732076
43.00	29.31092902	3.218060071	2.127371325
44.00	29.83581116	3.228652256	2.129934589
45.00	30.35860082	3.238990953	2.132425789
46.00	30.87935822	3.249087754	2.134848561
47.00	31.39814057	3.258953479	2.137206281
48.00	31.91500227	3.268598245	2.139502088
49.00	32.42999509	3.278031524	2.141738907
50.00	32.94316837	3.287262195	2.143919465
51.00	33.45456916	3.296298598	2.146046313
52.00	33.96424240	3.305148568	2.148121833
53.00	34.47223099	3.313819482	2.150148261
54.00	34.97857602	3.322318291	2.152127692
55.00	35.48331678	3.330651551	2.154062094
56.00	35.98649092	3.338825455	2.155953319
57.00	36.48813456	3.346845857	2.157803108
58.00	36.98828233	3.354718297	2.159613104
59.00	37.48696749	3.362448022	2.161384857


60.00	37.98422201	3.370040008	2.163119828
61.00	38.48007663	3.377498976	2.164819403
62.00	38.97456092	3.384829413	2.166484890
63.00	39.46770334	3.392035582	2.168117528
64.00	39.95953134	3.399121540	2.169718494
65.00	40.45007134	3.406091150	2.171288902
66.00	40.93934887	3.412948093	2.172829812
67.00	41.42738853	3.419695880	2.174342230
68.00	41.91421409	3.426337861	2.175827114
69.00	42.39984851	3.432877236	2.177285376
70.00	42.88431399	3.439317062	2.178717883
71.00	43.36763200	3.445660265	2.180125463
72.00	43.84982331	3.451909642	2.181508906
73.00	44.33090801	3.458067873	2.182868966
74.00	44.81090559	3.464137524	2.184206362
75.00	45.28983490	3.470121057	2.185521783
76.00	45.76771424	3.476020832	2.186815887
77.00	46.24456133	3.481839116	2.188089304
78.00	46.72039338	3.487578084	2.189342637
79.00	47.19522708	3.493239826	2.190576464
80.00	47.66907865	3.498826352	2.191791339
81.00	48.14196382	3.504339594	2.192987795
82.00	48.61389788	3.509781412	2.194166340
83.00	49.08489572	3.515153596	2.195327465
84.00	49.55497178	3.520457872	2.196471640
85.00	50.02414012	3.525695900	2.197599318
86.00	50.49241441	3.530869282	2.198710934
87.00	50.95980798	3.535979563	2.199806906
88.00	51.42633379	3.541028234	2.200887636
89.00	51.89200445	3.546016733	2.201953514
90.00	52.35683226	3.550946450	2.203004911
91.00	52.82082921	3.555818726	2.204042189
92.00	53.28400697	3.560634860	2.205065695
93.00	53.74637694	3.565396105	2.206075764
94.00	54.20795022	3.570103673	2.207072719
95.00	54.66873765	3.574758738	2.208056872
96.00	55.12874980	3.579362435	2.209028524
97.00	55.58799700	3.583915864	2.209987967
98.00	56.04648931	3.588420090	2.210935482
99.00	56.50423659	3.592876143	2.211871341
100.00	56.96124843	3.597285024	2.212795806
101.00	57.41753424	3.601647701	2.213709134
102.00	57.87310320	3.605965114	2.214611569
103.00	58.32796426	3.610238175	2.215503351
104.00	58.78212622	3.614467768	2.216384710
105.00	59.23559763	3.618654753	2.217255870
106.00	59.68838691	3.622799961	2.218117048
107.00	60.14050224	3.626904203	2.218968453
108.00	60.59195168	3.630968265	2.219810291
109.00	61.04274307	3.634992912	2.220642759
110.00	61.49288412	3.638978885	2.221466047
111.00	61.94238237	3.642926907	2.222280343
112.00	62.39124519	3.646837680	2.223085827
113.00	62.83947982	3.650711887	2.223882674
114.00	63.28709333	3.654550193	2.224671054
115.00	63.73409267	3.658353244	2.225451135
116.00	64.18048465	3.662121669	2.226223075
117.00	64.62627592	3.665856082	2.226987031
118.00	65.07147303	3.669557079	2.227743156
119.00	65.51608239	3.673225243	2.228491598
120.00	65.96011028	3.676861138	2.229232499
121.00	66.40356287	3.680465319	2.229966000


122.00	66.84644622	3.684038321	2.230692238
123.00	67.28876625	3.687580671	2.231411344
124.00	67.73052879	3.691092880	2.232123448
125.00	68.17173957	3.694575447	2.232828675
126.00	68.61240419	3.698028858	2.233527148
127.00	69.05252816	3.701453589	2.234218986
128.00	69.49211691	3.704850104	2.234904305
129.00	69.93117574	3.708218854	2.235583218
130.00	70.36970988	3.711560281	2.236255837
131.00	70.80772445	3.714874818	2.236922268
132.00	71.24522449	3.718162885	2.237582617
133.00	71.68221496	3.721424893	2.238236985
134.00	72.11870073	3.724661246	2.238885474
135.00	72.55468656	3.727872335	2.239528180
136.00	72.99017718	3.731058546	2.240165199
137.00	73.42517720	3.734220253	2.240796623
138.00	73.85969117	3.737357823	2.241422543
139.00	74.29372356	3.740471615	2.242043049
140.00	74.72727876	3.743561982	2.242658225
141.00	75.16036111	3.746629264	2.243268158
142.00	75.59297485	3.749673800	2.243872929
143.00	76.02512418	3.752695917	2.244472619
144.00	76.45681321	3.755695937	2.245067307
145.00	76.88804599	3.758674176	2.245657070
146.00	77.31882653	3.761630940	2.246241984
147.00	77.74915874	3.764566533	2.246822121
148.00	78.17904650	3.767481249	2.247397556
149.00	78.60849360	3.770375378	2.247968356
150.00	79.03750380	3.773249203	2.248534593
151.00	79.46608079	3.776103002	2.249096333
152.00	79.89422821	3.778937048	2.249653642
153.00	80.32194963	3.781751606	2.250206585
154.00	80.74924859	3.784546939	2.250755225
155.00	81.17612856	3.787323301	2.251299624
156.00	81.60259295	3.790080945	2.251839843
157.00	82.02864516	3.792820117	2.252375941
158.00	82.45428849	3.795541057	2.252907977
159.00	82.87952623	3.798244002	2.253436007
160.00	83.30436161	3.800929185	2.253960087
161.00	83.72879781	3.803596833	2.254480271
162.00	84.15283797	3.806247170	2.254996614
163.00	84.57648518	3.808880415	2.255509169
164.00	84.99974249	3.811496783	2.256017985
165.00	85.42261291	3.814096485	2.256523114
166.00	85.84509941	3.816679727	2.257024606
167.00	86.26720491	3.819246715	2.257522509
168.00	86.68893230	3.821797646	2.258016870
169.00	87.11028442	3.824332718	2.258507736
170.00	87.53126409	3.826852122	2.258995153
171.00	87.95187407	3.829356047	2.259479166
172.00	88.37211709	3.831844680	2.259959819
173.00	88.79199586	3.834318203	2.260437155
174.00	89.21151304	3.836776794	2.260911216
175.00	89.63067124	3.839220629	2.261382045
176.00	90.04947307	3.841649882	2.261849681
177.00	90.46792107	3.844064722	2.262314166
178.00	90.88601779	3.846465317	2.262775538
179.00	91.30376570	3.848851830	2.263233836
180.00	91.72116728	3.851224423	2.263689099
181.00	92.13822495	3.853583254	2.264141363
182.00	92.55494111	3.855928480	2.264590665
183.00	92.97131814	3.858260252	2.265037041


184.00	93.38735836	3.860578723	2.265480526
185.00	93.80306410	3.862884041	2.265921156
186.00	94.21843763	3.865176350	2.266358964
187.00	94.63348121	3.867455795	2.266793983
188.00	95.04819706	3.869722516	2.267226248
189.00	95.46258740	3.871976653	2.267655789
190.00	95.87665438	3.874218342	2.268082639
191.00	96.29040016	3.876447716	2.268506830
192.00	96.70382686	3.878664909	2.268928391
193.00	97.11693657	3.880870050	2.269347354
194.00	97.52973137	3.883063268	2.269763747
195.00	97.94221330	3.885244688	2.270177601
196.00	98.35438440	3.887414434	2.270588944
197.00	98.76624665	3.889572628	2.270997804
198.00	99.17780203	3.891719391	2.271404209
199.00	99.58905251	3.893854841	2.271808187
200.00	100.0000000	3.895979094	2.272209764
201.00	100.4106464	3.898092266	2.272608967
202.00	100.8209937	3.900194468	2.273005821
203.00	101.2310436	3.902285814	2.273400354
204.00	101.6407980	3.904366411	2.273792589
205.00	102.0502589	3.906436368	2.274182552
206.00	102.4594278	3.908495792	2.274570267
207.00	102.8683068	3.910544786	2.274955758
208.00	103.2768974	3.912583456	2.275339049
209.00	103.6852015	3.914611901	2.275720163
210.00	104.0932207	3.916630223	2.276099124
211.00	104.5009569	3.918638520	2.276475953
212.00	104.9084116	3.920636890	2.276850674
213.00	105.3155866	3.922625428	2.277223308
214.00	105.7224835	3.924604230	2.277593876
215.00	106.1291040	3.926573387	2.277962400
216.00	106.5354496	3.928532993	2.278328901
217.00	106.9415219	3.930483138	2.278693400
218.00	107.3473226	3.932423911	2.279055917
219.00	107.7528533	3.934355401	2.279416471
220.00	108.1581154	3.936277693	2.279775083
221.00	108.5631105	3.938190874	2.280131773
222.00	108.9678401	3.940095029	2.280486558
223.00	109.3723057	3.941990240	2.280839459
224.00	109.7765089	3.943876590	2.281190494
225.00	110.1804511	3.945754160	2.281539681
226.00	110.5841337	3.947623029	2.281887038
227.00	110.9875582	3.949483277	2.282232584
228.00	111.3907260	3.951334982	2.282576335
229.00	111.7936386	3.953178219	2.282918309
230.00	112.1962973	3.955013066	2.283258523
231.00	112.5987035	3.956839596	2.283596994
232.00	113.0008587	3.958657884	2.283933739
233.00	113.4027641	3.960468002	2.284268774
234.00	113.8044211	3.962270021	2.284602115
235.00	114.2058311	3.964064014	2.284933778
236.00	114.6069953	3.965850050	2.285263779
237.00	115.0079152	3.967628197	2.285592133
238.00	115.4085918	3.969398525	2.285918856
239.00	115.8090267	3.971161100	2.286243962
240.00	116.2092209	3.972915989	2.286567467
241.00	116.6091759	3.974663258	2.286889385
242.00	117.0088928	3.976402971	2.287209731
243.00	117.4083728	3.978135192	2.287528520
244.00	117.8076173	3.979859984	2.287845764
245.00	118.2066274	3.981577410	2.288161478


246.00	118.6054042	3.983287531	2.288475677
247.00	119.0039491	3.984990408	2.288788372
248.00	119.4022631	3.986686102	2.289099579
249.00	119.8003475	3.988374671	2.289409309
250.00	120.1982034	3.990056174	2.289717577
251.00	120.5958319	3.991730669	2.290024394
252.00	120.9932343	3.993398213	2.290329774
253.00	121.3904115	3.995058862	2.290633729
254.00	121.7873648	3.996712674	2.290936271
255.00	122.1840952	3.998359701	2.291237414
256.00	122.5806039	4.000000000	2.291537168
257.00	122.9768918	4.001633624	2.291835546
258.00	123.3729602	4.003260625	2.292132560
259.00	123.7688100	4.004881058	2.292428220
260.00	124.1644424	4.006494973	2.292722540
261.00	124.5598583	4.008102421	2.293015529
262.00	124.9550589	4.009703455	2.293307199
263.00	125.3500451	4.011298123	2.293597562
264.00	125.7448180	4.012886475	2.293886628
265.00	126.1393785	4.014468561	2.294174408
266.00	126.5337278	4.016044429	2.294460912
267.00	126.9278667	4.017614126	2.294746152
268.00	127.3217963	4.019177700	2.295030138
269.00	127.7155175	4.020735197	2.295312879
270.00	128.1090314	4.022286665	2.295594386
271.00	128.5023388	4.023832148	2.295874669
272.00	128.8954408	4.025371692	2.296153739
273.00	129.2883383	4.026905342	2.296431604
274.00	129.6810322	4.028433141	2.296708274
275.00	130.0735234	4.029955134	2.296983760
276.00	130.4658130	4.031471364	2.297258070
277.00	130.8579017	4.032981873	2.297531214
278.00	131.2497905	4.034486704	2.297803202
279.00	131.6414803	4.035985899	2.298074041
280.00	132.0329721	4.037479498	2.298343742
281.00	132.4242666	4.038967544	2.298612313
282.00	132.8153648	4.040450075	2.298879763
283.00	133.2062675	4.041927133	2.299146101
284.00	133.5969756	4.043398757	2.299411335
285.00	133.9874899	4.044864986	2.299675475
286.00	134.3778114	4.046325859	2.299938527
287.00	134.7679409	4.047781414	2.300200502
288.00	135.1578791	4.049231689	2.300461406
289.00	135.5476269	4.050676721	2.300721249
290.00	135.9371852	4.052116549	2.300980037
291.00	136.3265548	4.053551208	2.301237780
292.00	136.7157364	4.054980735	2.301494485
293.00	137.1047310	4.056405165	2.301750160
294.00	137.4935392	4.057824535	2.302004812
295.00	137.8821619	4.059238880	2.302258450
296.00	138.2705998	4.060648235	2.302511080
297.00	138.6588538	4.062052633	2.302762711
298.00	139.0469246	4.063452109	2.303013349
299.00	139.4348131	4.064846698	2.303263002
300.00	139.8225198	4.066236432	2.303511677
301.00	140.2100457	4.067621345	2.303759381
302.00	140.5973914	4.069001469	2.304006122
303.00	140.9845578	4.070376836	2.304251906
304.00	141.3715454	4.071747480	2.304496741
305.00	141.7583552	4.073113432	2.304740632
306.00	142.1449878	4.074474722	2.304983588
307.00	142.5314439	4.075831384	2.305225614


308.00	142.9177243	4.077183446	2.305466718
309.00	143.3038297	4.078530940	2.305706905
310.00	143.6897607	4.079873897	2.305946182
311.00	144.0755181	4.081212345	2.306184557
312.00	144.4611026	4.082546315	2.306422034
313.00	144.8465149	4.083875836	2.306658621
314.00	145.2317556	4.085200937	2.306894324
315.00	145.6168255	4.086521648	2.307129148
316.00	146.0017251	4.087837995	2.307363101
317.00	146.3864553	4.089150009	2.307596187
318.00	146.7710167	4.090457716	2.307828413
319.00	147.1554099	4.091761145	2.308059786
320.00	147.5396355	4.093060322	2.308290310
321.00	147.9236943	4.094355276	2.308519992
322.00	148.3075869	4.095646032	2.308748837
323.00	148.6913139	4.096932619	2.308976851
324.00	149.0748760	4.098215061	2.309204040
325.00	149.4582739	4.099493385	2.309430409
326.00	149.8415080	4.100767618	2.309655964
327.00	150.2245791	4.102037785	2.309880710
328.00	150.6074878	4.103303911	2.310104653
329.00	150.9902348	4.104566021	2.310327798
330.00	151.3728205	4.105824141	2.310550150
331.00	151.7552457	4.107078295	2.310771715
332.00	152.1375109	4.108328508	2.310992497
333.00	152.5196168	4.109574803	2.311212503
334.00	152.9015639	4.110817206	2.311431737
335.00	153.2833529	4.112055740	2.311650204
336.00	153.6649843	4.113290429	2.311867909
337.00	154.0464586	4.114521295	2.312084858
338.00	154.4277766	4.115748362	2.312301054
339.00	154.8089387	4.116971654	2.312516503
340.00	155.1899456	4.118191193	2.312731210
341.00	155.5707978	4.119407001	2.312945180
342.00	155.9514959	4.120619101	2.313158417
343.00	156.3320404	4.121827515	2.313370926
344.00	156.7124319	4.123032266	2.313582711
345.00	157.0926710	4.124233374	2.313793778
346.00	157.4727582	4.125430862	2.314004131
347.00	157.8526940	4.126624750	2.314213773
348.00	158.2324790	4.127815061	2.314422711
349.00	158.6121138	4.129001815	2.314630948
350.00	158.9915988	4.130185032	2.314838488
351.00	159.3709347	4.131364735	2.315045337
352.00	159.7501219	4.132540942	2.315251497
353.00	160.1291610	4.133713675	2.315456974
354.00	160.5080524	4.134882954	2.315661772
355.00	160.8867968	4.136048798	2.315865895
356.00	161.2653946	4.137211227	2.316069348
357.00	161.6438463	4.138370262	2.316272133
358.00	162.0221525	4.139525920	2.316474256
359.00	162.4003136	4.140678223	2.316675720
360.00	162.7783303	4.141827188	2.316876530
361.00	163.1562028	4.142972835	2.317076689
362.00	163.5339319	4.144115183	2.317276201
363.00	163.9115179	4.145254250	2.317475071
364.00	164.2889613	4.146390054	2.317673302
365.00	164.6662627	4.147522615	2.317870897
366.00	165.0434225	4.148651949	2.318067862
367.00	165.4204411	4.149778076	2.318264199
368.00	165.7973192	4.150901013	2.318459913
369.00	166.1740572	4.152020778	2.318655006


370.00	166.5506554	4.153137389	2.318849483
371.00	166.9271145	4.154250862	2.319043347
372.00	167.3034348	4.155361215	2.319236603
373.00	167.6796169	4.156468466	2.319429252
374.00	168.0556612	4.157572631	2.319621300
375.00	168.4315681	4.158673727	2.319812750
376.00	168.8073381	4.159771771	2.320003604
377.00	169.1829717	4.160866780	2.320193867
378.00	169.5584694	4.161958770	2.320383542
379.00	169.9338314	4.163047757	2.320572633
380.00	170.3090584	4.164133757	2.320761142
381.00	170.6841508	4.165216787	2.320949073
382.00	171.0591089	4.166296863	2.321136429
383.00	171.4339333	4.167374000	2.321323215
384.00	171.8086243	4.168448214	2.321509432
385.00	172.1831825	4.169519521	2.321695084
386.00	172.5576081	4.170587936	2.321880175
387.00	172.9319018	4.171653474	2.322064707
388.00	173.3060638	4.172716151	2.322248684
389.00	173.6800946	4.173775981	2.322432109
390.00	174.0539946	4.174832980	2.322614985
391.00	174.4277643	4.175887163	2.322797315
392.00	174.8014040	4.176938544	2.322979102
393.00	175.1749142	4.177987137	2.323160349
394.00	175.5482953	4.179032958	2.323341059
395.00	175.9215477	4.180076021	2.323521235
396.00	176.2946717	4.181116339	2.323700880
397.00	176.6676679	4.182153928	2.323879997
398.00	177.0405365	4.183188801	2.324058589
399.00	177.4132781	4.184220972	2.324236659
400.00	177.7858929	4.185250455	2.324414210
401.00	178.1583815	4.186277264	2.324591244
402.00	178.5307441	4.187301413	2.324767764
403.00	178.9029811	4.188322914	2.324943773
404.00	179.2750931	4.189341781	2.325119274
405.00	179.6470803	4.190358029	2.325294270
406.00	180.0189431	4.191371669	2.325468762
407.00	180.3906819	4.192382715	2.325642755
408.00	180.7622971	4.193391180	2.325816251
409.00	181.1337890	4.194397078	2.325989252
410.00	181.5051581	4.195400420	2.326161761
411.00	181.8764047	4.196401220	2.326333781
412.00	182.2475292	4.197399490	2.326505313
413.00	182.6185320	4.198395243	2.326676362
414.00	182.9894133	4.199388491	2.326846929
415.00	183.3601737	4.200379246	2.327017017
416.00	183.7308134	4.201367522	2.327186628
417.00	184.1013327	4.202353330	2.327355765
418.00	184.4717322	4.203336681	2.327524431
419.00	184.8420121	4.204317589	2.327692627
420.00	185.2121727	4.205296066	2.327860357
421.00	185.5822145	4.206272122	2.328027622
422.00	185.9521378	4.207245770	2.328194426
423.00	186.3219428	4.208217021	2.328360770
424.00	186.6916301	4.209185887	2.328526657
425.00	187.0611999	4.210152380	2.328692089
426.00	187.4306525	4.211116510	2.328857069
427.00	187.7999884	4.212078290	2.329021599
428.00	188.1692078	4.213037730	2.329185681
429.00	188.5383111	4.213994842	2.329349318
430.00	188.9072986	4.214949636	2.329512511
431.00	189.2761707	4.215902125	2.329675263


432.00	189.6449276	4.216852318	2.329837577
433.00	190.0135698	4.217800226	2.329999454
434.00	190.3820976	4.218745861	2.330160896
435.00	190.7505112	4.219689233	2.330321907
436.00	191.1188110	4.220630352	2.330482487
437.00	191.4869973	4.221569230	2.330642640
438.00	191.8550705	4.222505877	2.330802367
439.00	192.2230309	4.223440302	2.330961671
440.00	192.5908788	4.224372518	2.331120553
441.00	192.9586144	4.225302533	2.331279015
442.00	193.3262382	4.226230357	2.331437060
443.00	193.6937505	4.227156002	2.331594690
444.00	194.0611515	4.228079477	2.331751907
445.00	194.4284415	4.229000793	2.331908713
446.00	194.7956210	4.229919958	2.332065109
447.00	195.1626901	4.230836983	2.332221099
448.00	195.5296492	4.231751878	2.332376683
449.00	195.8964986	4.232664652	2.332531864
450.00	196.2632386	4.233575315	2.332686644
451.00	196.6298695	4.234483877	2.332841024
452.00	196.9963916	4.235390347	2.332995007
453.00	197.3628052	4.236294735	2.333148595
454.00	197.7291105	4.237197049	2.333301789
455.00	198.0953080	4.238097300	2.333454592
456.00	198.4613979	4.238995497	2.333607004
457.00	198.8273804	4.239891649	2.333759029
458.00	199.1932560	4.240785764	2.333910668
459.00	199.5590247	4.241677852	2.334061922
460.00	199.9246871	4.242567923	2.334212795
461.00	200.2902432	4.243455985	2.334363286
462.00	200.6556935	4.244342046	2.334513399
463.00	201.0210382	4.245226117	2.334663135
464.00	201.3862776	4.246108205	2.334812495
465.00	201.7514120	4.246988319	2.334961483
466.00	202.1164416	4.247866468	2.335110098
467.00	202.4813668	4.248742661	2.335258344
468.00	202.8461877	4.249616906	2.335406221
469.00	203.2109048	4.250489212	2.335553732
470.00	203.5755182	4.251359587	2.335700878
471.00	203.9400282	4.252228040	2.335847660
472.00	204.3044352	4.253094578	2.335994082
473.00	204.6687393	4.253959211	2.336140143
474.00	205.0329409	4.254821945	2.336285847
475.00	205.3970402	4.255682791	2.336431194
476.00	205.7610375	4.256541755	2.336576186
477.00	206.1249330	4.257398846	2.336720825
478.00	206.4887271	4.258254072	2.336865112
479.00	206.8524199	4.259107440	2.337009050
480.00	207.2160118	4.259958960	2.337152639
481.00	207.5795029	4.260808637	2.337295881
482.00	207.9428937	4.261656482	2.337438778
483.00	208.3061842	4.262502500	2.337581331
484.00	208.6693748	4.263346700	2.337723543
485.00	209.0324658	4.264189090	2.337865413
486.00	209.3954573	4.265029677	2.338006945
487.00	209.7583497	4.265868469	2.338148139
488.00	210.1211432	4.266705473	2.338288997
489.00	210.4838380	4.267540697	2.338429520
490.00	210.8464345	4.268374148	2.338569710
491.00	211.2089327	4.269205834	2.338709569
492.00	211.5713331	4.270035762	2.338849098
493.00	211.9336358	4.270863939	2.338988298


494.00	212.2958411	4.271690372	2.339127171
495.00	212.6579492	4.272515070	2.339265718
496.00	213.0199604	4.273338038	2.339403941
497.00	213.3818749	4.274159284	2.339541841
498.00	213.7436930	4.274978816	2.339679420
499.00	214.1054148	4.275796639	2.339816679
500.00	214.4670407	4.276612762	2.339953618
501.00	214.8285709	4.277427191	2.340090241
502.00	215.1900056	4.278239932	2.340226548
503.00	215.5513450	4.279050994	2.340362540
504.00	215.9125894	4.279860382	2.340498219
505.00	216.2737390	4.280668104	2.340633587
506.00	216.6347941	4.281474166	2.340768643
507.00	216.9957549	4.282278575	2.340903391
508.00	217.3566215	4.283081338	2.341037831
509.00	217.7173943	4.283882460	2.341171965
510.00	218.0780735	4.284681950	2.341305793
511.00	218.4386592	4.285479813	2.341439317
512.00	218.7991518	4.286276055	2.341572539
513.00	219.1595515	4.287070684	2.341705460
514.00	219.5198584	4.287863706	2.341838081
515.00	219.8800728	4.288655127	2.341970402
516.00	220.2401949	4.289444953	2.342102427
517.00	220.6002250	4.290233191	2.342234155
518.00	220.9601632	4.291019847	2.342365588
519.00	221.3200098	4.291804927	2.342496728
520.00	221.6797650	4.292588438	2.342627575
521.00	222.0394290	4.293370386	2.342758131
522.00	222.3990021	4.294150776	2.342888397
523.00	222.7584844	4.294929615	2.343018374
524.00	223.1178761	4.295706909	2.343148063
525.00	223.4771776	4.296482664	2.343277466
526.00	223.8363889	4.297256887	2.343406584
527.00	224.1955103	4.298029581	2.343535417
528.00	224.5545421	4.298800755	2.343663968
529.00	224.9134844	4.299570414	2.343792237
530.00	225.2723374	4.300338563	2.343920225
531.00	225.6311013	4.301105208	2.344047934
532.00	225.9897765	4.301870356	2.344175365
533.00	226.3483629	4.302634011	2.344302519
534.00	226.7068610	4.303396181	2.344429396
535.00	227.0652708	4.304156869	2.344555999
536.00	227.4235925	4.304916083	2.344682328
537.00	227.7818265	4.305673827	2.344808384
538.00	228.1399728	4.306430107	2.344934169
539.00	228.4980317	4.307184929	2.345059683
540.00	228.8560034	4.307938298	2.345184928
541.00	229.2138881	4.308690220	2.345309905
542.00	229.5716860	4.309440700	2.345434614
543.00	229.9293972	4.310189744	2.345559058
544.00	230.2870220	4.310937357	2.345683236
545.00	230.6445606	4.311683545	2.345807150
546.00	231.0020132	4.312428312	2.345930802
547.00	231.3593799	4.313171664	2.346054191
548.00	231.7166610	4.313913607	2.346177320
549.00	232.0738566	4.314654145	2.346300189
550.00	232.4309670	4.315393285	2.346422799
551.00	232.7879923	4.316131030	2.346545152
552.00	233.1449327	4.316867386	2.346667247
553.00	233.5017885	4.317602359	2.346789087
554.00	233.8585598	4.318335953	2.346910672
555.00	234.2152467	4.319068174	2.347032004


556.00	234.5718496	4.319799027	2.347153083
557.00	234.9283685	4.320528516	2.347273910
558.00	235.2848037	4.321256647	2.347394486
559.00	235.6411553	4.321983424	2.347514812
560.00	235.9974235	4.322708853	2.347634890
561.00	236.3536086	4.323432938	2.347754720
562.00	236.7097106	4.324155685	2.347874303
563.00	237.0657299	4.324877098	2.347993640
564.00	237.4216665	4.325597182	2.348112732
565.00	237.7775206	4.326315942	2.348231580
566.00	238.1332925	4.327033383	2.348350185
567.00	238.4889822	4.327749509	2.348468548
568.00	238.8445901	4.328464325	2.348586670
569.00	239.2001162	4.329177836	2.348704551
570.00	239.5555607	4.329890047	2.348822193
571.00	239.9109239	4.330600961	2.348939596
572.00	240.2662059	4.331310585	2.349056762
573.00	240.6214068	4.332018922	2.349173692
574.00	240.9765268	4.332725977	2.349290385
575.00	241.3315662	4.333431755	2.349406844
576.00	241.6865251	4.334136260	2.349523068
577.00	242.0414036	4.334839497	2.349639060
578.00	242.3962020	4.335541469	2.349754819
579.00	242.7509203	4.336242183	2.349870347
580.00	243.1055589	4.336941641	2.349985645
581.00	243.4601178	4.337639849	2.350100713
582.00	243.8145972	4.338336811	2.350215552
583.00	244.1689973	4.339032531	2.350330163
584.00	244.5233182	4.339727013	2.350444548
585.00	244.8775602	4.340420263	2.350558706
586.00	245.2317234	4.341112284	2.350672639
587.00	245.5858079	4.341803080	2.350786347
588.00	245.9398139	4.342492656	2.350899831
589.00	246.2937416	4.343181016	2.351013093
590.00	246.6475912	4.343868164	2.351126132
591.00	247.0013628	4.344554105	2.351238951
592.00	247.3550565	4.345238842	2.351351549
593.00	247.7086726	4.345922380	2.351463927
594.00	248.0622112	4.346604723	2.351576087
595.00	248.4156725	4.347285874	2.351688028
596.00	248.7690566	4.347965839	2.351799753
597.00	249.1223636	4.348644621	2.351911261
598.00	249.4755938	4.349322224	2.352022553
599.00	249.8287474	4.349998653	2.352133631
600.00	250.1818243	4.350673910	2.352244494
601.00	250.5348249	4.351348001	2.352355144
602.00	250.8877493	4.352020929	2.352465582
603.00	251.2405976	4.352692698	2.352575808
604.00	251.5933699	4.353363312	2.352685823
605.00	251.9460666	4.354032775	2.352795628
606.00	252.2986876	4.354701091	2.352905223
607.00	252.6512331	4.355368263	2.353014609
608.00	253.0037034	4.356034296	2.353123788
609.00	253.3560985	4.356699193	2.353232759
610.00	253.7084187	4.357362959	2.353341524
611.00	254.0606640	4.358025596	2.353450084
612.00	254.4128346	4.358687109	2.353558438
613.00	254.7649307	4.359347502	2.353666588
614.00	255.1169524	4.360006778	2.353774534
615.00	255.4688998	4.360664941	2.353882277
616.00	255.8207732	4.361321994	2.353989819
617.00	256.1725726	4.361977942	2.354097159


618.00	256.5242983	4.362632787	2.354204298
619.00	256.8759503	4.363286534	2.354311237
620.00	257.2275288	4.363939187	2.354417977
621.00	257.5790339	4.364590748	2.354524518
622.00	257.9304659	4.365241221	2.354630862
623.00	258.2818247	4.365890611	2.354737008
624.00	258.6331107	4.366538920	2.354842958
625.00	258.9843239	4.367186152	2.354948711
626.00	259.3354645	4.367832311	2.355054270
627.00	259.6865326	4.368477400	2.355159634
628.00	260.0375284	4.369121422	2.355264805
629.00	260.3884519	4.369764382	2.355369782
630.00	260.7393034	4.370406282	2.355474567
631.00	261.0900830	4.371047125	2.355579160
632.00	261.4407908	4.371686917	2.355683562
633.00	261.7914270	4.372325658	2.355787773
634.00	262.1419917	4.372963355	2.355891795
635.00	262.4924851	4.373600008	2.355995627
636.00	262.8429072	4.374235622	2.356099271
637.00	263.1932582	4.374870201	2.356202727
638.00	263.5435383	4.375503747	2.356305995
639.00	263.8937476	4.376136264	2.356409077
640.00	264.2438863	4.376767755	2.356511973
641.00	264.5939544	4.377398223	2.356614684
642.00	264.9439521	4.378027672	2.356717210
643.00	265.2938795	4.378656104	2.356819552
644.00	265.6437369	4.379283524	2.356921710
645.00	265.9935242	4.379909934	2.357023686
646.00	266.3432417	4.380535338	2.357125479
647.00	266.6928895	4.381159738	2.357227091
648.00	267.0424677	4.381783138	2.357328521
649.00	267.3919764	4.382405541	2.357429772
650.00	267.7414158	4.383026951	2.357530842
651.00	268.0907860	4.383647369	2.357631733
652.00	268.4400872	4.384266800	2.357732446
653.00	268.7893194	4.384885246	2.357832980
654.00	269.1384828	4.385502711	2.357933337
655.00	269.4875775	4.386119197	2.358033518
656.00	269.8366038	4.386734709	2.358133522
657.00	270.1855616	4.387349247	2.358233350
658.00	270.5344511	4.387962817	2.358333004
659.00	270.8832724	4.388575420	2.358432482
660.00	271.2320258	4.389187059	2.358531787
661.00	271.5807112	4.389797739	2.358630919
662.00	271.9293288	4.390407461	2.358729877
663.00	272.2778789	4.391016229	2.358828664
664.00	272.6263613	4.391624045	2.358927279
665.00	272.9747764	4.392230913	2.359025722
666.00	273.3231243	4.392836835	2.359123996
667.00	273.6714049	4.393441814	2.359222099
668.00	274.0196186	4.394045854	2.359320033
669.00	274.3677653	4.394648956	2.359417797
670.00	274.7158453	4.395251124	2.359515394
671.00	275.0638587	4.395852361	2.359612823
672.00	275.4118055	4.396452670	2.359710084
673.00	275.7596859	4.397052053	2.359807179
674.00	276.1075000	4.397650513	2.359904108
675.00	276.4552479	4.398248054	2.360000871
676.00	276.8029298	4.398844677	2.360097469
677.00	277.1505458	4.399440385	2.360193902
678.00	277.4980959	4.400035182	2.360290171
679.00	277.8455804	4.400629070	2.360386277


680.00	278.1929994	4.401222051	2.360482220
681.00	278.5403528	4.401814130	2.360578000
682.00	278.8876410	4.402405307	2.360673618
683.00	279.2348639	4.402995586	2.360769075
684.00	279.5820218	4.403584970	2.360864371
685.00	279.9291147	4.404173461	2.360959507
686.00	280.2761427	4.404761062	2.361054482
687.00	280.6231060	4.405347775	2.361149299
688.00	280.9700047	4.405933604	2.361243956
689.00	281.3168388	4.406518551	2.361338455
690.00	281.6636086	4.407102618	2.361432796
691.00	282.0103141	4.407685808	2.361526979
692.00	282.3569554	4.408268123	2.361621006
693.00	282.7035327	4.408849567	2.361714876
694.00	283.0500460	4.409430142	2.361808591
695.00	283.3964955	4.410009850	2.361902150
696.00	283.7428813	4.410588693	2.361995554
697.00	284.0892036	4.411166676	2.362088803
698.00	284.4354623	4.411743799	2.362181899
699.00	284.7816577	4.412320065	2.362274841
700.00	285.1277898	4.412895478	2.362367630
701.00	285.4738587	4.413470039	2.362460266
702.00	285.8198647	4.414043751	2.362552750
703.00	286.1658077	4.414616616	2.362645083
704.00	286.5116878	4.415188637	2.362737264
705.00	286.8575053	4.415759817	2.362829295
706.00	287.2032602	4.416330157	2.362921176
707.00	287.5489526	4.416899660	2.363012907
708.00	287.8945826	4.417468329	2.363104488
709.00	288.2401504	4.418036166	2.363195921
710.00	288.5856560	4.418603173	2.363287205
711.00	288.9310995	4.419169353	2.363378342
712.00	289.2764811	4.419734708	2.363469330
713.00	289.6218009	4.420299240	2.363560172
714.00	289.9670589	4.420862953	2.363650868
715.00	290.3122553	4.421425847	2.363741417
716.00	290.6573902	4.421987927	2.363831820
717.00	291.0024637	4.422549193	2.363922078
718.00	291.3474758	4.423109648	2.364012192
719.00	291.6924268	4.423669294	2.364102161
720.00	292.0373167	4.424228135	2.364191986
721.00	292.3821456	4.424786171	2.364281667
722.00	292.7269136	4.425343406	2.364371205
723.00	293.0716208	4.425899841	2.364460601
724.00	293.4162673	4.426455479	2.364549855
725.00	293.7608532	4.427010323	2.364638966
726.00	294.1053787	4.427564373	2.364727937
727.00	294.4498438	4.428117634	2.364816766
728.00	294.7942487	4.428670106	2.364905455
729.00	295.1385933	4.429221791	2.364994004
730.00	295.4828779	4.429772694	2.365082413
731.00	295.8271026	4.430322814	2.365170683
732.00	296.1712673	4.430872155	2.365258814
733.00	296.5153724	4.431420719	2.365346806
734.00	296.8594177	4.431968508	2.365434660
735.00	297.2034035	4.432515524	2.365522377
736.00	297.5473298	4.433061769	2.365609957
737.00	297.8911968	4.433607245	2.365697399
738.00	298.2350045	4.434151955	2.365784706
739.00	298.5787530	4.434695900	2.365871876
740.00	298.9224425	4.435239083	2.365958911
741.00	299.2660730	4.435781506	2.366045810


742.00	299.6096446	4.436323171	2.366132575
743.00	299.9531575	4.436864079	2.366219205
744.00	300.2966117	4.437404234	2.366305701
745.00	300.6400073	4.437943637	2.366392063
746.00	300.9833444	4.438482290	2.366478292
747.00	301.3266232	4.439020195	2.366564389
748.00	301.6698436	4.439557355	2.366650353
749.00	302.0130059	4.440093771	2.366736184
750.00	302.3561101	4.440629445	2.366821884
751.00	302.6991562	4.441164380	2.366907453
752.00	303.0421445	4.441698577	2.366992890
753.00	303.3850750	4.442232038	2.367078197
754.00	303.7279477	4.442764766	2.367163374
755.00	304.0707628	4.443296762	2.367248421
756.00	304.4135204	4.443828028	2.367333339
757.00	304.7562205	4.444358567	2.367418127
758.00	305.0988634	4.444888380	2.367502787
759.00	305.4414489	4.445417469	2.367587318
760.00	305.7839773	4.445945836	2.367671721
761.00	306.1264487	4.446473483	2.367755997
762.00	306.4688631	4.447000413	2.367840146
763.00	306.8112206	4.447526626	2.367924167
764.00	307.1535213	4.448052125	2.368008062
765.00	307.4957653	4.448576912	2.368091831
766.00	307.8379527	4.449100989	2.368175474
767.00	308.1800836	4.449624357	2.368258992
768.00	308.5221581	4.450147018	2.368342384
769.00	308.8641762	4.450668975	2.368425652
770.00	309.2061381	4.451190229	2.368508795
771.00	309.5480439	4.451710783	2.368591814
772.00	309.8898936	4.452230637	2.368674709
773.00	310.2316873	4.452749793	2.368757482
774.00	310.5734251	4.453268255	2.368840131
775.00	310.9151072	4.453786023	2.368922657
776.00	311.2567335	4.454303099	2.369005061
777.00	311.5983042	4.454819485	2.369087343
778.00	311.9398194	4.455335183	2.369169504
779.00	312.2812791	4.455850195	2.369251543
780.00	312.6226835	4.456364522	2.369333461
781.00	312.9640326	4.456878166	2.369415258
782.00	313.3053266	4.457391130	2.369496936
783.00	313.6465654	4.457903414	2.369578493
784.00	313.9877493	4.458415021	2.369659930
785.00	314.3288782	4.458925953	2.369741249
786.00	314.6699523	4.459436210	2.369822448
787.00	315.0109716	4.459945795	2.369903529
788.00	315.3519363	4.460454710	2.369984491
789.00	315.6928464	4.460962957	2.370065335
790.00	316.0337020	4.461470536	2.370146062
791.00	316.3745032	4.461977450	2.370226671
792.00	316.7152501	4.462483701	2.370307164
793.00	317.0559427	4.462989290	2.370387539
794.00	317.3965812	4.463494219	2.370467798
795.00	317.7371656	4.463998490	2.370547942
796.00	318.0776961	4.464502103	2.370627969
797.00	318.4181726	4.465005062	2.370707881
798.00	318.7585953	4.465507368	2.370787678
799.00	319.0989643	4.466009022	2.370867360
800.00	319.4392796	4.466510026	2.370946927
801.00	319.7795413	4.467010381	2.371026380
802.00	320.1197496	4.467510090	2.371105720
803.00	320.4599044	4.468009154	2.371184946


804.00	320.8000059	4.468507574	2.371264058
805.00	321.1400542	4.469005353	2.371343058
806.00	321.4800493	4.469502492	2.371421945
807.00	321.8199913	4.469998992	2.371500719
808.00	322.1598804	4.470494855	2.371579382
809.00	322.4997165	4.470990083	2.371657932
810.00	322.8394997	4.471484677	2.371736372
811.00	323.1792302	4.471978639	2.371814700
812.00	323.5189081	4.472471970	2.371892917
813.00	323.8585333	4.472964673	2.371971024
814.00	324.1981060	4.473456748	2.372049020
815.00	324.5376263	4.473948198	2.372126907
816.00	324.8770942	4.474439023	2.372204683
817.00	325.2165098	4.474929226	2.372282351
818.00	325.5558732	4.475418807	2.372359909
819.00	325.8951845	4.475907769	2.372437358
820.00	326.2344437	4.476396114	2.372514699
821.00	326.5736510	4.476883841	2.372591932
822.00	326.9128064	4.477370954	2.372669057
823.00	327.2519100	4.477857453	2.372746074
824.00	327.5909618	4.478343340	2.372822983
825.00	327.9299620	4.478828617	2.372899786
826.00	328.2689106	4.479313286	2.372976481
827.00	328.6078076	4.479797346	2.373053071
828.00	328.9466533	4.480280801	2.373129553
829.00	329.2854476	4.480763652	2.373205930
830.00	329.6241906	4.481245900	2.373282201
831.00	329.9628824	4.481727546	2.373358367
832.00	330.3015231	4.482208592	2.373434428
833.00	330.6401128	4.482689040	2.373510383
834.00	330.9786514	4.483168891	2.373586234
835.00	331.3171392	4.483648147	2.373661981
836.00	331.6555762	4.484126808	2.373737624
837.00	331.9939624	4.484604877	2.373813163
838.00	332.3322979	4.485082355	2.373888598
839.00	332.6705828	4.485559242	2.373963930
840.00	333.0088172	4.486035542	2.374039159
841.00	333.3470012	4.486511255	2.374114285
842.00	333.6851347	4.486986382	2.374189309
843.00	334.0232180	4.487460925	2.374264231
844.00	334.3612510	4.487934886	2.374339050
845.00	334.6992339	4.488408265	2.374413768
846.00	335.0371667	4.488881065	2.374488385
847.00	335.3750494	4.489353286	2.374562900
848.00	335.7128823	4.489824930	2.374637315
849.00	336.0506652	4.490295999	2.374711629
850.00	336.3883984	4.490766493	2.374785842
851.00	336.7260818	4.491236415	2.374859955
852.00	337.0637156	4.491705765	2.374933969
853.00	337.4012998	4.492174545	2.375007882
854.00	337.7388345	4.492642756	2.375081697
855.00	338.0763198	4.493110399	2.375155412
856.00	338.4137556	4.493577477	2.375229029
857.00	338.7511422	4.494043990	2.375302546
858.00	339.0884796	4.494509940	2.375375966
859.00	339.4257678	4.494975327	2.375449287
860.00	339.7630070	4.495440154	2.375522510
861.00	340.1001971	4.495904422	2.375595636
862.00	340.4373382	4.496368131	2.375668665
863.00	340.7744305	4.496831284	2.375741596
864.00	341.1114740	4.497293881	2.375814430
865.00	341.4484688	4.497755925	2.375887168


866.00	341.7854149	4.498217415	2.375959809
867.00	342.1223123	4.498678354	2.376032354
868.00	342.4591613	4.499138743	2.376104803
869.00	342.7959618	4.499598583	2.376177157
870.00	343.1327139	4.500057876	2.376249415
871.00	343.4694177	4.500516622	2.376321578
872.00	343.8060732	4.500974823	2.376393646
873.00	344.1426805	4.501432481	2.376465619
874.00	344.4792398	4.501889596	2.376537497
875.00	344.8157509	4.502346169	2.376609281
876.00	345.1522141	4.502802203	2.376680972
877.00	345.4886294	4.503257698	2.376752568
878.00	345.8249968	4.503712656	2.376824071
879.00	346.1613164	4.504167077	2.376895481
880.00	346.4975883	4.504620963	2.376966797
881.00	346.8338126	4.505074316	2.377038020
882.00	347.1699893	4.505527136	2.377109151
883.00	347.5061184	4.505979426	2.377180190
884.00	347.8422001	4.506431185	2.377251136
885.00	348.1782345	4.506882415	2.377321990
886.00	348.5142215	4.507333117	2.377392752
887.00	348.8501612	4.507783294	2.377463423
888.00	349.1860538	4.508232945	2.377534003
889.00	349.5218992	4.508682072	2.377604491
890.00	349.8576976	4.509130676	2.377674889
891.00	350.1934490	4.509578759	2.377745196
892.00	350.5291535	4.510026322	2.377815413
893.00	350.8648111	4.510473365	2.377885539
894.00	351.2004219	4.510919891	2.377955575
895.00	351.5359859	4.511365899	2.378025522
896.00	351.8715033	4.511811392	2.378095379
897.00	352.2069741	4.512256371	2.378165147
898.00	352.5423983	4.512700836	2.378234825
899.00	352.8777761	4.513144789	2.378304415
900.00	353.2131074	4.513588231	2.378373916
901.00	353.5483924	4.514031164	2.378443328
902.00	353.8836311	4.514473588	2.378512653
903.00	354.2188236	4.514915504	2.378581889
904.00	354.5539699	4.515356914	2.378651037
905.00	354.8890701	4.515797819	2.378720098
906.00	355.2241243	4.516238219	2.378789071
907.00	355.5591324	4.516678117	2.378857957
908.00	355.8940947	4.517117513	2.378926756
909.00	356.2290111	4.517556408	2.378995468
910.00	356.5638818	4.517994804	2.379064094
911.00	356.8987067	4.518432702	2.379132633
912.00	357.2334859	4.518870102	2.379201086
913.00	357.5682195	4.519307006	2.379269454
914.00	357.9029076	4.519743414	2.379337735
915.00	358.2375502	4.520179329	2.379405931
916.00	358.5721474	4.520614751	2.379474041
917.00	358.9066992	4.521049681	2.379542066
918.00	359.2412057	4.521484121	2.379610006
919.00	359.5756670	4.521918071	2.379677862
920.00	359.9100831	4.522351532	2.379745633
921.00	360.2444541	4.522784506	2.379813319
922.00	360.5787800	4.523216994	2.379880922
923.00	360.9130609	4.523648996	2.379948440
924.00	361.2472969	4.524080514	2.380015875
925.00	361.5814880	4.524511549	2.380083226
926.00	361.9156343	4.524942102	2.380150493
927.00	362.2497358	4.525372174	2.380217678


928.00	362.5837926	4.525801766	2.380284779
929.00	362.9178048	4.526230879	2.380351798
930.00	363.2517724	4.526659514	2.380418734
931.00	363.5856955	4.527087672	2.380485588
932.00	363.9195741	4.527515355	2.380552359
933.00	364.2534083	4.527942563	2.380619048
934.00	364.5871981	4.528369297	2.380685656
935.00	364.9209437	4.528795559	2.380752182
936.00	365.2546450	4.529221349	2.380818626
937.00	365.5883021	4.529646668	2.380884989
938.00	365.9219151	4.530071518	2.380951271
939.00	366.2554841	4.530495900	2.381017472
940.00	366.5890091	4.530919814	2.381083593
941.00	366.9224901	4.531343261	2.381149632
942.00	367.2559272	4.531766243	2.381215592
943.00	367.5893205	4.532188760	2.381281471
944.00	367.9226701	4.532610814	2.381347271
945.00	368.2559759	4.533032405	2.381412990
946.00	368.5892380	4.533453535	2.381478630
947.00	368.9224566	4.533874205	2.381544191
948.00	369.2556316	4.534294415	2.381609672
949.00	369.5887631	4.534714166	2.381675074
950.00	369.9218512	4.535133460	2.381740397
951.00	370.2548959	4.535552298	2.381805642
952.00	370.5878973	4.535970679	2.381870808
953.00	370.9208554	4.536388607	2.381935896
954.00	371.2537703	4.536806080	2.382000905
955.00	371.5866421	4.537223101	2.382065837
956.00	371.9194707	4.537639671	2.382130691
957.00	372.2522563	4.538055789	2.382195467
958.00	372.5849989	4.538471458	2.382260165
959.00	372.9176986	4.538886678	2.382324786
960.00	373.2503554	4.539301450	2.382389331
961.00	373.5829694	4.539715776	2.382453798
962.00	373.9155406	4.540129655	2.382518188
963.00	374.2480691	4.540543090	2.382582502
964.00	374.5805550	4.540956080	2.382646740
965.00	374.9129982	4.541368627	2.382710901
966.00	375.2453989	4.541780732	2.382774986
967.00	375.5777570	4.542192396	2.382838995
968.00	375.9100728	4.542603620	2.382902928
969.00	376.2423461	4.543014404	2.382966786
970.00	376.5745771	4.543424749	2.383030569
971.00	376.9067659	4.543834658	2.383094276
972.00	377.2389124	4.544244129	2.383157908
973.00	377.5710167	4.544653165	2.383221465
974.00	377.9030789	4.545061766	2.383284947
975.00	378.2350990	4.545469933	2.383348355
976.00	378.5670771	4.545877667	2.383411689
977.00	378.8990132	4.546284969	2.383474948
978.00	379.2309075	4.546691840	2.383538133
979.00	379.5627598	4.547098281	2.383601244
980.00	379.8945704	4.547504292	2.383664282
981.00	380.2263392	4.547909875	2.383727245
982.00	380.5580663	4.548315030	2.383790136
983.00	380.8897518	4.548719759	2.383852953
984.00	381.2213956	4.549124061	2.383915697
985.00	381.5529979	4.549527939	2.383978368
986.00	381.8845587	4.549931393	2.384040966
987.00	382.2160781	4.550334423	2.384103492
988.00	382.5475561	4.550737032	2.384165945
989.00	382.8789927	4.551139218	2.384228326


990.00	383.2103880	4.551540985	2.384290635
991.00	383.5417421	4.551942331	2.384352872
992.00	383.8730551	4.552343259	2.384415037
993.00	384.2043268	4.552743769	2.384477130
994.00	384.5355575	4.553143861	2.384539152
995.00	384.8667472	4.553543538	2.384601102
996.00	385.1978959	4.553942798	2.384662981
997.00	385.5290036	4.554341645	2.384724789
998.00	385.8600705	4.554740078	2.384786526
999.00	386.1910965	4.555138097	2.384848193


x	wz7 (1/x)	1/wz1(1/x)	wz1 (x)/x	)]
. 01	-2.646710782	$9.6634075233 \mathrm{E}-05$	-2.171026136	4.216560783
. 02	-2.222295838	3.3805171526E-04	-1.455232863	3.545317398
. 03	-1.942418575	6.9823314349E-04	-1.027357716	3.161074929
. 04	-1.726839032	1.1639149853E-03	-. 7174892341	2.893981938
. 05	-1.548553989	1.7260950898E-03	-. 4723716582	2.690836303
. 06	-1.394927852	$2.3779912801 \mathrm{E}-03$	-. 2682782339	2.527959446
. 07	-1.258954109	3.1141880438E-03-9	-9.2548502951E-02	2.392734387
. 08	-1.136313236	3.9301956324E-03	6.2377688326E-02	2.277640380
. 09	-1.024140355	$4.8221921933 \mathrm{E}-03$	. 2013791494	2.177834471
. 10	-. 9204306755	5.7868598938E-03	. 3277889904	2.090016292
. 11	-. 8237223771	6.8212743364E-03	. 4439861288	2.011836928
. 12	-. 7329142675	7.9228264536E-03	. 5517283490	1.941566167
. 13	-. 6471545780	9.0891653263E-03	. 6523516032	1.877893474
. 14	- . 5657698670	$1.0318155088 \mathrm{E}-02$	. 7468952537	1.819802974
. 15	-. 4882177621	1.1607841651E-02	. 8361840119	1.766491720
. 16	-. 4140545061	1.2956426469E-02	. 9208833848	1.717314417
. 17	-. 3429120452	1.4362245676E-02	1.001538290	1.671744959
. 18	-. 2744814608	1.5823752758E-02	1.078600618	1.629349000
. 19	- . 2085007381	1.7339504657E-02	1.152449345	1.589763962
. 20	-. 1447455700	1.8908149981E-02	1.223405471	1.552684194
. 21	-8.3022329214E-02	2.0528419151E-02	1.291743324	1.517849764
. 22	-2.3162620306E-02	2.2199115892E-02	1.357699228	1.485037873
. 23	$3.4980999181 \mathrm{E}-02$	2.3919110225E-02	1.421478248	1.454056178
. 24	9.1538418657E-02	2.5687332127E-02	1.483259496	1.424737559
. 25	. 1466247050	2.7502766177E-02	1.543200359	1.396935939
. 26	. 2003423168	$2.9364446847 \mathrm{E}-02$	1.601439896	1.370522952
. 27	. 2527829158	3.1271454337E-02	1.658101594	1.345385222
. 28	. 3040288609	3.3222911012E-02	1.713295625	1.321422156
. 29	. 3541544501	3.5217978003E-02	1.767120706	1.298544121
. 30	4032269591	3.7255852421E-02	1.819665648	1.276670933
. 31	4513075168	$3.9335764741 \mathrm{E}-02$	1.871010646	1.255730593
. 32	. 4984518463	4.1456976466E-02	1.921228369	1.235658233
. 33	5447108969	$4.3618778034 \mathrm{E}-02$	1.970384877	1.216395217
. 34	. 5901313851	4.5820486920E-02	2.018540411	1.197888386
. 35	. 6347562603	4.8061445925E-02	2.065750061	1.180089406
. 36	. 6786251071	5.0341021536E-02	2.112064341	1.162954214
. 37	. 7217744954	5.2658602614E-02	2.157529687	1.146442537
. 38	. 7642382851	5.5013599000E-02	2.202188892	1.130517482
. 39	. 8060478927	5.7405440337E-02	2.246081477	1.115145173
. 40	. 8472325260	5.9833574964E-02	2.289244022	1.100294438
. 41	. 8878193907	6.2297468898E-02	2.331710455	1.085936534
. 42	9278338730	6.4796604900E-02	2.373512302	1.072044910
. 43	. 9672997020	6.7330481601E-02	2.414678914	1.058594991
. 44	1.006239093	6.9898612698E-02	2.455237662	1.045563993
. 45	1.044672879	7.2500526208E-02	2.495214118	1.032930754
. 46	1.082620621	7.5135763759E-02	2.534632205	1.020675594
. 47	1.120100715	7.7803880000E-02	2.573514343	1.008780175
. 48	1.157130486	8.0504441902E-02	2.611881570	. 9972273891


49	1.193726266	8.3237028264E-02	2.649753658	. 9860012546
50	1.229903476	8.6001229165E-02	2.687149212	9750868180
. 51	1.265676690	8.8796645467E-02	2.724085761	9644700726
. 52	1.301059700	9.1622888354E-02	2.760579842	9541378812
53	1.336065569	9.4479578895E-02	2.796647074	9440779077
. 54	1.370706686	9.7366347633E-02	2.832302225	9342785548
. 55	1.404994810	. 1002828342	2.867559273	9247289080
. 56	1.438941116	. 1032286870	2.902431467	9154186841
. 57	1.472556230	. 1062035626	2.936931370	9063381849
. 58	1.505850267	. 1092071260	2.971070911	8974782548
. 59	1.538832866	. 1122390497	3.004861429	. 8888302424
. 60	1.571513215	. 1152990136	3.038313708	8803859647
. 61	1.603900087	. 1183867050	3.071438015	8721376752
. 62	1.636001857	. 1215018180	3.104244132	. 8640780342
. 63	1.667826530	. 1246440533	3.136741390	. 8562000815
. 64	1.699381766	. 1278131183	3.168938693	. 8484972115
. 65	1.730674893	. 1310087263	3.200844545	. 8409631501
. 66	1.761712934	. 1342305968	3.232467075	8335919339
. 67	1.792502617	. 1374784551	3.263814059	8263778899
. 68	1.823050398	. 1407520320	3.294892940	. 8193156183
. 69	1.853362469	. 1440510639	3.325710845	. 8123999752
. 70	1.883444781	. 1473752923	3.356274609	. 8056260574
. 71	1.913303047	. 1507244639	3.386590784	. 7989891878
. 72	1.942942764	. 1540983301	3.416665659	. 7924849026
. 73	1.972369218	. 1574966475	3.446505273	. 7861089385
. 74	2.001587496	. 1609191768	3.476115428	. 7798572215
. 75	2.030602497	. 1643656836	3.505501703	. 7737258558
. 76	2.059418942	. 1678359377	3.534669463	. 7677111144
. 77	2.088041382	. 1713297131	3.563623871	. 7618094296
. 78	2.116474204	. 1748467879	3.592369901	. 7560173839
. 79	2.144721643	. 1783869442	3.620912341	. 7503317027
. 80	2.172787787	. 1819499680	3.649255809	. 7447492461
. 81	2.200676583	. 1855356492	3.677404758	. 7392670022
. 82	2.228391846	. 1891437809	3.705363484	. 7338820803
. 83	2.255937262	. 1927741603	3.733136133	. 7285917044
. 84	2.283316396	. 1964265877	3.760726709	. 7233932082
. 85	2.310532698	. 2001008669	3.788139081	. 7182840287
. 86	2.337589505	. 2037968050	3.815376988	. 7132617017
. 87	2.364490049	. 2075142122	3.842444044	. 7083238567
. 88	2.391237460	. 2112529019	3.869343747	. 7034682124
. 89	2.417834770	. 2150126904	3.896079481	. 6986925724
. 90	2.444284918	. 2187933971	3.922654522	. 6939948213
. 91	2.470590754	. 2225948442	3.949072041	. 6893729206
. 92	2.496755043	. 2264168568	3.975335113	. 6848249058
. 93	2.522780465	. 2302592625	4.001446716	. 6803488820
. 94	2.548669624	. 2341218919	4.027409739	. 6759430216
. 95	2.574425048	. 2380045779	4.053226980	. 6716055610
. 96	2.600049189	. 2419071561	4.078901159	. 6673347974
. 97	2.625544432	. 2458294645	4.104434910	. 6631290868
. 98	2.650913095	. 2497713437	4.129830795	. 6589868407
. 99	2.676157430	. 2537326364	4.155091298	. 6549065243
1.00	2.701279626	. 2577131879	4.180218835	6508866537
1.01	2.726281813	. 2617128455	4.205215752	. 6469257944
1.02	2.751166064	. 2657314588	4.230084330	. 6430225584
1.03	2.775934395	. 2697688798	4.254826785	. 6391756028
1.04	2.800588770	. 2738249621	4.279445274	. 6353836280
1.05	2.825131100	. 2778995618	4.303941895	. 6316453755
1.06	2.849563247	. 2819925369	4.328318691	. 6279596266
1.07	2.873887023	. 2861037474	4.352577646	. 6243252007
1.08	2.898104196	. 2902330550	4.376720697	. 6207409537
1.09	2.922216489	. 2943803235	4.400749728	. 6172057767
1.10	2.946225581	. 2985454187	4.424666573	. 6137185945


1.11	2.970133108	. 3027282080	4.448473020	. 6102783644
1.12	2.993940669	. 3069285604	4.472170814	6068840748
1.13	3.017649820	. 3111463471	4.495761652	. 6035347443
1.14	3.041262082	. 3153814406	4.519247191	. 6002294202
1.15	3.064778938	. 3196337154	4.542629047	5969671777
1.16	3.088201838	. 3239030472	4.565908796	5937471186
1.17	3.111532195	. 3281893138	4.589087975	. 5905683708
1.18	3.134771390	. 3324923943	4.612168087	. 5874300866
1.19	3.157920773	. 3368121692	4.635150595	. 5843314427
1.20	3.180981661	. 3411485209	4.658036930	5812716385
1.21	3.203955343	. 3455013329	4.680828490	5782498958
1.22	3.226843077	. 3498704904	4.703526638	. 5752654580
1.23	3.249646094	. 3542558799	4.726132709	. 5723175889
1.24	3.272365598	. 3586573894	4.748648004	. 5694055727
1.25	3.295002765	. 3630749082	4.771073796	. 5665287124
1.26	3.317558746	. 3675083268	4.793411331	. 5636863301
1.27	3.340034666	. 3719575374	4.815661826	. 5608777657
1.28	3.362431629	. 3764224332	4.837826469	. 5581023764
1.29	3.384750711	. 3809029087	4.859906426	. 5553595363
1.30	3.406992968	. 3853988597	4.881902834	. 5526486359
1.31	3.429159433	. 3899101832	4.903816809	. 5499690812
1.32	3.451251117	. 3944367776	4.925649440	. 5473202934
1.33	3.473269012	. 3989785421	4.947401794	. 5447017086
1.34	3.495214087	4035353773	4.969074916	. 5421127769
1.35	3.517087292	4081071851	4.990669829	5395529624
1.36	3.538889559	. 4126938681	5.012187535	. 5370217423
1.37	3.560621799	4172953304	5.033629015	. 5345186068
1.38	3.582284907	. 4219114771	5.054995229	. 5320430588
1.39	3.603879760	. 4265422141	5.076287120	. 5295946129
1.40	3.625407216	4311874486	5.097505610	. 5271727959
1.41	3.646868117	4358470888	5.118651604	. 5247771455
1.42	3.668263290	4405210439	5.139725986	. 5224072109
1.43	3.689593544	4452092241	5.160729628	5200625517
1.44	3.710859675	. 4499115406	5.181663380	. 5177427379
1.45	3.732062461	. 4546279054	5.202528077	. 5154473497
1.46	3.753202667	4593582316	5.223324540	. 5131759769
1.47	3.774281044	. 4641024333	5.244053572	. 5109282188
1.48	3.795298328	4688604253	5.264715962	. 5087036840
1.49	3.816255241	4736321235	5.285312482	5065019899
1.50	3.837152495	. 4784174447	5.305843893	. 5043227627
1.51	3.857990784	4832163063	5.326310939	. 5021656369
1.52	3.878770793	. 4880286269	5.346714352	. 5000302552
1.53	3.899493193	. 4928543257	5.367054849	. 4979162682
1.54	3.920158645	. 4976933229	5.387333135	4958233344
1.55	3.940767795	. 5025455395	5.407549903	. 4937511196
1.56	3.961321281	. 5074108971	5.427705832	. 4916992970
1.57	3.981819728	. 5122893184	5.447801590	4896675468
1.58	4.002263750	. 5171807267	5.467837832	. 4876555562
1.59	4.022653951	. 5220850460	5.487815203	4856630191
1.60	4.042990924	. 5270022014	5.507734336	. 4836896358
1.61	4.063275253	. 5319321184	5.527595852	. 4817351130
1.62	4.083507510	. 5368747233	5.547400363	4797991636
1.63	4.103688260	. 5418299432	5.567148470	4778815065
1.64	4.123818056	. 5467977061	5.586840763	. 4759818665
1.65	4.143897443	. 5517779402	5.606477822	. 4740999741
1.66	4.163926958	. 5567705750	5.626060219	4722355651
1.67	4.183907127	. 5617755402	5.645588514	. 4703883810
1.68	4.203838469	. 5667927665	5.665063261	4685581684
1.69	4.223721492	. 5718221850	5.684485000	. 4667446792
1.70	4.243556701	. 5768637276	5.703854267	4649476699
1.71	4.263344586	. 5819173270	5.723171586	4631669024
1.72	4.283085636	. 5869829162	5.742437474	. 4614021428


1.73	4.302780326	5920604291	5.761652440	. 4596531623
1.74	4.322429129	. 5971498001	5.780816983	. 4579197362
1.75	4.342032506	. 6022509642	5.799931597	4562016444
1.76	4.361590914	. 6073638571	5.818996764	. 4544986712
1.77	4.381104801	. 6124884150	5.838012964	. 4528106048
1.78	4.400574608	. 6176245747	5.856980664	. 4511372375
1.79	4.420000772	. 6227722737	5.875900326	. 4494783659
1.80	4.439383719	. 6279314498	5.894772407	. 4478337901
1.81	4.458723873	. 6331020417	5.913597353	. 4462033141
1.82	4.478021647	. 6382839885	5.932375607	. 4445867458
1.83	4.497277452	. 6434772296	5.951107601	. 4429838963
1.84	4.516491690	. 6486817055	5.969793766	. 4413945806
1.85	4.535664759	. 6538973567	5.988434520	. 4398186168
1.86	4.554797049	. 6591241245	6.007030281	. 4382558267
1.87	4.573888946	. 6643619507	6.025581457	. 4367060352
1.88	4.592940829	. 6696107775	6.044088450	. 4351690703
1.89	4.611953073	. 6748705478	6.062551659	4336447632
1.90	4.630926047	. 6801412048	6.080971474	. 4321329482
1.91	4.649860113	. 6854226922	6.099348280	. 4306334626
1.92	4.668755631	. 6907149544	6.117682459	. 4291461466
1.93	4.687612953	. 6960179361	6.135974384	. 4276708431
1.94	4.706432428	. 7013315825	6.154224424	. 4262073979
1.95	4.725214398	. 7066558392	6.172432945	. 4247556595
1.96	4.743959203	. 7119906526	6.190600303	. 4233154792
1.97	4.762667175	. 7173359691	6.208726854	. 4218867106
1.98	4.781338644	. 7226917358	6.226812946	. 4204692101
1.99	4.799973934	. 7280579002	6.244858923	. 4190628365
2.00	4.818573365	. 7334344103	6.262865124	. 4176674510
2.01	4.837137253	. 7388212144	6.280831884	. 4162829172
2.02	4.855665910	. 7442182614	6.298759532	. 4149091010
2.03	4.874159642	. 7496255006	6.316648395	. 4135458707
2.04	4.892618752	. 7550428814	6.334498794	. 4121930965
2.05	4.911043539	. 7604703541	6.352311044	. 4108506513
2.06	4.929434298	. 7659078691	6.370085459	. 4095184096
2.07	4.947791320	. 7713553773	6.387822347	. 4081962483
2.08	4.966114892	. 7768128299	6.405522012	. 4068840463
2.09	4.984405298	. 7822801787	6.423184754	. 4055816844
2.10	5.002662816	. 7877573757	6.440810870	. 4042890455
2.11	5.020887724	. 7932443734	6.458400653	. 4030060142
2.12	5.039080293	. 7987411246	6.475954389	. 4017324772
2.13	5.057240793	. 8042475826	6.493472365	. 4004683230
2.14	5.075369488	. 8097637008	6.510954862	. 3992134418
2.15	5.093466640	. 8152894333	6.528402158	. 3979677255
2.16	5.111532510	. 8208247343	6.545814525	. 3967310680
2.17	5.129567351	. 8263695586	6.563192235	. 3955033647
2.18	5.147571415	. 8319238612	6.580535555	. 3942845126
2.19	5.165544953	. 8374875975	6.597844749	. 3930744104
2.20	5.183488210	. 8430607231	6.615120078	. 3918729585
2.21	5.201401428	. 8486431942	6.632361797	. 3906800587
2.22	5.219284848	. 8542349672	6.649570162	. 3894956144
2.23	5.237138706	. 8598359988	6.666745424	. 3883195305
2.24	5.254963236	. 8654462461	6.683887830	. 3871517133
2.25	5.272758669	. 8710656665	6.700997625	. 3859920706
2.26	5.290525234	. 8766942178	6.718075050	. 3848405117
2.27	5.308263156	. 8823318580	6.735120346	. 3836969471
2.28	5.325972658	. 8879785454	6.752133747	. 3825612888
2.29	5.343653960	. 8936342389	6.769115486	. 3814334500
2.30	5.361307279	. 8992988972	6.786065796	. 3803133454
2.31	5.378932830	. 9049724799	6.802984902	. 3792008907
2.32	5.396530825	. 9106549464	6.819873030	. 3780960032
2.33	5.414101475	. 9163462566	6.836730402	. 3769986011
2.34	5.431644986	. 9220463709	6.853557238	. 3759086041


2.35	5.449161564	. 9277552497	6.870353755	. 3748259328
2.36	5.466651411	9334728537	6.887120167	. 3737505092
2.37	5.484114727	9391991440	6.903856687	. 3726822564
2.38	5.501551711	9449340821	6.920563525	. 3716210985
2.39	5.518962556	9506776296	6.937240887	. 3705669607
2.40	5.536347458	9564297483	6.953888978	. 3695197695
2.41	5.553706607	9621904006	6.970508002	. 3684794523
2.42	5.571040191	9679595488	6.987098158	. 3674459375
2.43	5.588348398	. 9737371557	7.003659644	. 3664191545
2.44	5.605631413	9795231843	7.020192657	. 3653990340
2.45	5.622889418	9853175979	7.036697389	. 3643855072
2.46	5.640122593	9911203600	7.053174032	. 3633785067
2.47	5.657331118	9969314345	7.069622776	. 3623779659
2.48	5.674515168	1.002750785	7.086043807	. 3613838191
2.49	5.691674918	1.008578377	7.102437311	. 3603960014
2.50	5.708810542	1.014414174	7.118803472	. 3594144491
2.51	5.725922209	1.020258141	7.135142469	. 3584390991
2.52	5.743010089	1.026110243	7.151454483	. 3574698893
2.53	5.760074349	1.031970445	7.167739690	. 3565067585
2.54	5.777115154	1.037838713	7.183998266	. 3555496462
2.55	5.794132667	1.043715013	7.200230385	. 3545984929
2.56	5.811127051	1.049599311	7.216436217	. 3536532397
2.57	5.828098465	1.055491573	7.232615934	. 3527138287
2.58	5.845047068	1.061391765	7.248769701	. 3517802026
2.59	5.861973016	1.067299855	7.264897687	. 3508523050
2.60	5.878876464	1.073215808	7.281000055	. 3499300803
2.61	5.895757566	1.079139593	7.297076968	. 3490134733
2.62	5.912616472	1.085071177	7.313128588	. 3481024301
2.63	5.929453335	1.091010526	7.329155072	. 3471968969
2.64	5.946268301	1.096957610	7.345156580	. 3462968212
2.65	5.963061517	1.102912396	7.361133268	. 3454021506
2.66	5.979833131	1.108874853	7.377085289	. 3445128340
2.67	5.996583284	1.114844948	7.393012796	. 3436288204
2.68	6.013312120	1.120822651	7.408915942	. 3427500598
2.69	6.030019781	1.126807930	7.424794876	. 3418765027
2.70	6.046706404	1.132800755	7.440649746	. 3410081005
2.71	6.063372129	1.138801095	7.456480699	. 3401448048
2.72	6.080017093	1.144808919	7.472287880	. 3392865681
2.73	6.096641430	1.150824197	7.488071433	. 3384333436
2.74	6.113245275	1.156846899	7.503831501	. 3375850847
2.75	6.129828761	1.162876996	7.519568225	. 3367417459
2.76	6.146392019	1.168914456	7.535281745	. 3359032818
2.77	6.162935178	1.174959251	7.550972198	. 3350696479
2.78	6.179458368	1.181011352	7.566639721	. 3342408002
2.79	6.195961717	1.187070729	7.582284451	. 3334166950
2.80	6.212445350	1.193137354	7.597906521	. 3325972895
2.81	6.228909392	1.199211197	7.613506065	. 3317825412
2.82	6.245353968	1.205292230	7.629083214	. 3309724083
2.83	6.261779200	1.211380425	7.644638099	. 3301668492
2.84	6.278185208	1.217475753	7.660170848	. 3293658233
2.85	6.294572115	1.223578187	7.675681590	. 3285692900
2.86	6.310940037	1.229687699	7.691170452	. 3277772095
2.87	6.327289094	1.235804260	7.706637558	. 3269895423
2.88	6.343619403	1.241927844	7.722083034	. 3262062497
2.89	6.359931078	1.248058423	7.737507002	. 3254272931
2.90	6.376224235	1.254195969	7.752909585	. 3246526345
2.91	6.392498986	1.260340457	7.768290903	. 3238822365
2.92	6.408755445	1.266491859	7.783651076	. 3231160618
2.93	6.424993723	1.272650148	7.798990223	. 3223540740
2.94	6.441213930	1.278815298	7.814308462	. 3215962367
2.95	6.457416175	1.284987283	7.829605908	. 3208425142
2.96	6.473600566	1.291166076	7.844882677	. 3200928712


2.97	6.489767211	1.297351652	7.860138884	. 3193472728
2.98	6.505916217	1.303543984	7.875374641	. 3186056843
2.99	6.522047688	1.309743048	7.890590062	. 3178680717
3.00	6.538161728	1.315948817	7.905785257	. 3171344013
3.01	6.554258442	1.322161265	7.920960337	. 3164046396
3.02	6.570337931	1.328380369	7.936115410	. 3156787539
3.03	6.586400297	1.334606103	7.951250586	. 3149567115
3.04	6.602445640	1.340838441	7.966365971	. 3142384802
3.05	6.618474061	1.347077359	7.981461672	. 3135240282
3.06	6.634485658	1.353322833	7.996537794	. 3128133241
3.07	6.650480528	1.359574838	8.011594442	. 3121063367
3.08	6.666458770	1.365833350	8.026631719	. 3114030353
3.09	6.682420478	1.372098344	8.041649728	. 3107033896
3.10	6.698365748	1.378369797	8.056648571	. 3100073694
3.11	6.714294675	1.384647684	8.071628348	. 3093149451
3.12	6.730207353	1.390931982	8.086589160	. 3086260872
3.13	6.746103873	1.397222667	8.101531106	. 3079407668
3.14	6.761984328	1.403519717	8.116454284	. 3072589551
3.15	6.777848810	1.409823106	8.131358791	. 3065806236
3.16	6.793697407	1.416132813	8.146244725	. 3059057444
3.17	6.809530211	1.422448815	8.161112180	. 3052342896
3.18	6.825347310	1.428771087	8.175961252	. 3045662317
3.19	6.841148792	1.435099608	8.190792035	. 3039015437
3.20	6.856934743	1.441434355	8.205604623	. 3032401985
3.21	6.872705251	1.447775305	8.220399107	. 3025821696
3.22	6.888460402	1.454122436	8.235175580	. 3019274308
3.23	6.904200280	1.460475726	8.249934133	. 3012759560
3.24	6.919924970	1.466835153	8.264674856	. 3006277196
3.25	6.935634555	1.473200694	8.279397838	. 2999826959
3.26	6.951329118	1.479572327	8.294103169	. 2993408600
3.27	6.967008742	1.485950032	8.308790936	. 2987021868
3.28	6.982673507	1.492333786	8.323461227	. 2980666518
3.29	6.998323496	1.498723567	8.338114128	. 2974342306
3.30	7.013958787	1.505119355	8.352749725	. 2968048991
3.31	7.029579461	1.511521128	8.367368103	. 2961786333
3.32	7.045185595	1.517928865	8.381969348	. 2955554098
3.33	7.060777269	1.524342545	8.396553542	. 2949352051
3.34	7.076354560	1.530762147	8.411120769	. 2943179962
3.35	7.091917545	1.537187651	8.425671111	. 2937037601
3.36	7.107466299	1.543619034	8.440204650	. 2930924743
3.37	7.123000899	1.550056278	8.454721467	. 2924841163
3.38	7.138521420	1.556499361	8.469221643	. 2918786640
3.39	7.154027935	1.562948264	8.483705258	. 2912760955
3.40	7.169520519	1.569402965	8.498172390	. 2906763890
3.41	7.184999246	1.575863446	8.512623119	. 2900795231
3.42	7.200464186	1.582329685	8.527057523	. 2894854766
3.43	7.215915413	1.588801663	8.541475678	. 2888942283
3.44	7.231352998	1.595279361	8.555877661	. 2883057574
3.45	7.246777012	1.601762758	8.570263549	. 2877200435
3.46	7.262187525	1.608251835	8.584633418	. 2871370659
3.47	7.277584607	1.614746572	8.598987341	. 2865568046
3.48	7.292968327	1.621246951	8.613325395	. 2859792396
3.49	7.308338754	1.627752952	8.627647651	. 2854043510
3.50	7.323695955	1.634264556	8.641954185	. 2848321192
3.51	7.339039999	1.640781743	8.656245067	. 2842625250
3.52	7.354370952	1.647304495	8.670520371	. 2836955490
3.53	7.369688880	1.653832793	8.684780169	. 2831311723
3.54	7.384993851	1.660366618	8.699024530	. 2825693760
3.55	7.400285929	1.666905952	8.713253526	. 2820101415
3.56	7.415565179	1.673450777	8.727467227	. 2814534504
3.57	7.430831666	1.680001072	8.741665702	. 2808992843
3.58	7.446085454	1.686556822	8.755849020	. 2803476253


3.59	7.461326606	1.693118006	8.770017249	. 2797984553
3.60	7.476555185	1.699684607	8.784170457	2792517567
3.61	7.491771253	1.706256607	8.798308713	2787075118
3.62	7.506974873	1.712833989	8.812432081	2781657034
3.63	7.522166107	1.719416733	8.826540630	2776263141
3.64	7.537345015	1.726004822	8.840634424	2770893270
3.65	7.552511657	1.732598240	8.854713530	. 2765547251
3.66	7.567666095	1.739196967	8.868778012	2760224917
3.67	7.582808388	1.745800987	8.882827935	. 2754926102
3.68	7.597938595	1.752410283	8.896863362	2749650642
3.69	7.613056774	1.759024836	8.910884357	2744398375
3.70	7.628162985	1.765644630	8.924890984	. 2739169139
3.71	7.643257285	1.772269648	8.938883304	2733962776
3.72	7.658339732	1.778899872	8.952861381	. 2728779127
3.73	7.673410383	1.785535286	8.966825275	. 2723618036
3.74	7.688469294	1.792175873	8.980775048	2718479348
3.75	7.703516522	1.798821615	8.994710761	. 2713362909
3.76	7.718552123	1.805472497	9.008632474	2708268568
3.77	7.733576151	1.812128502	9.022540247	2703196173
3.78	7.748588663	1.818789613	9.036434140	. 2698145575
3.79	7.763589712	1.825455814	9.050314211	. 2693116628
3.80	7.778579353	1.832127088	9.064180520	. 2688109183
3.81	7.793557640	1.838803419	9.078033125	. 2683123096
3.82	7.808524625	1.845484792	9.091872083	. 2678158223
3.83	7.823480363	1.852171189	9.105697452	. 2673214423
3.84	7.838424906	1.858862595	9.119509290	. 2668291552
3.85	7.853358306	1.865558994	9.133307652	. 2663389473
3.86	7.868280616	1.872260370	9.147092595	. 2658508045
3.87	7.883191885	1.878966707	9.160864176	. 2653647133
3.88	7.898092167	1.885677990	9.174622448	. 2648806599
3.89	7.912981511	1.892394203	9.188367469	. 2643986309
3.90	7.927859968	1.899115330	9.202099291	2639186130
3.91	7.942727589	1.905841356	9.215817970	2634405929
3.92	7.957584422	1.912572266	9.229523560	. 2629645574
3.93	7.972430518	1.919308044	9.243216114	2624904936
3.94	7.987265925	1.926048675	9.256895686	2620183886
3.95	8.002090692	1.932794144	9.270562328	. 2615482297
3.96	8.016904867	1.939544435	9.284216093	2610800041
3.97	8.031708499	1.946299535	9.297857033	. 2606136993
3.98	8.046501635	1.953059427	9.311485200	. 2601493029
3.99	8.061284323	1.959824097	9.325100645	. 2596868026
4.00	8.076056609	1.966593530	9.338703420	. 2592261861
4.01	8.090818541	1.973367712	9.352293576	. 2587674414
4.02	8.105570164	1.980146627	9.365871162	. 2583105564
4.03	8.120311524	1.986930262	9.379436229	. 2578555193
4.04	8.135042669	1.993718601	9.392988827	. 2574023183
4.05	8.149763642	2.000511630	9.406529005	. 2569509416
4.06	8.164474489	2.007309335	9.420056812	. 2565013777
4.07	8.179175255	2.014111702	9.433572298	2560536152
4.08	8.193865985	2.020918716	9.447075510	. 2556076425
4.09	8.208546722	2.027730364	9.460566497	. 2551634486
4.10	8.223217510	2.034546630	9.474045307	. 2547210220
4.11	8.237878394	2.041367502	9.487511987	. 2542803519
4.12	8.252529416	2.048192964	9.500966584	. 2538414270
4.13	8.267170620	2.055023004	9.514409146	2534042367
4.14	8.281802048	2.061857607	9.527839719	. 2529687700
4.15	8.296423743	2.068696760	9.541258349	. 2525350162
4.16	8.311035747	2.075540448	9.554665082	. 2521029648
4.17	8.325638102	2.082388659	9.568059965	. 2516726051
4.18	8.340230849	2.089241379	9.581443042	. 2512439268
4.19	8.354814030	2.096098593	9.594814360	. 2508169194
4.20	8.369387686	2.102960290	9.608173961	2503915727


4.21	8.383951858	2.109826455	9.621521892	. 2499678765
4.22	8.398506586	2.116697074	9.634858196	2495458208
4.23	8.413051910	2.123572136	9.648182918	. 2491253954
4.24	8.427587872	2.130451626	9.661496102	. 2487065905
4.25	8.442114509	2.137335532	9.674797790	. 2482893962
4.26	8.456631862	2.144223840	9.688088025	. 2478738028
4.27	8.471139971	2.151116538	9.701366852	. 2474598006
4.28	8.485638873	2.158013612	9.714634312	. 2470473799
4.29	8.500128608	2.164915050	9.727890449	. 2466365312
4.30	8.514609215	2.171820838	9.741135303	. 2462272452
4.31	8.529080731	2.178730964	9.754368917	. 2458195123
4.32	8.543543194	2.185645416	9.767591333	. 2454133234
4.33	8.557996643	2.192564180	9.780802591	. 2450086692
4.34	8.572441114	2.199487244	9.794002734	. 2446055406
4.35	8.586876646	2.206414596	9.807191802	. 2442039285
4.36	8.601303274	2.213346223	9.820369834	. 2438038239
4.37	8.615721037	2.220282112	9.833536873	. 2434052179
4.38	8.630129969	2.227222251	9.846692958	. 2430081016
4.39	8.644530109	2.234166629	9.859838128	. 2426124663
4.40	8.658921491	2.241115232	9.872972424	. 2422183033
4.41	8.673304153	2.248068048	9.886095885	. 2418256038
4.42	8.687678128	2.255025066	9.899208549	. 2414343595
4.43	8.702043454	2.261986273	9.912310456	. 2410445617
4.44	8.716400164	2.268951657	9.925401645	. 2406562020
4.45	8.730748294	2.275921206	9.938482154	. 2402692722
4.46	8.745087880	2.282894909	9.951552021	. 2398837638
4.47	8.759418954	2.289872753	9.964611284	. 2394996686
4.48	8.773741552	2.296854726	9.977659981	. 2391169785
4.49	8.788055708	2.303840818	9.990698150	. 2387356854
4.50	8.802361456	2.310831015	10.00372583	. 2383557812
4.51	8.816658830	2.317825307	10.01674305	. 2379772581
4.52	8.830947862	2.324823682	10.02974986	. 2376001079
4.53	8.845228586	2.331826128	10.04274628	. 2372243230
4.54	8.859501036	2.338832634	10.05573236	. 2368498955
4.55	8.873765244	2.345843188	10.06870814	. 2364768177
4.56	8.888021243	2.352857779	10.08167364	. 2361050819
4.57	8.902269066	2.359876396	10.09462890	. 2357346806
4.58	8.916508744	2.366899026	10.10757397	. 2353656061
4.59	8.930740310	2.373925660	10.12050887	. 2349978511
4.60	8.944963796	2.380956286	10.13343363	. 2346314079
4.61	8.959179234	2.387990892	10.14634831	. 2342662694
4.62	8.973386654	2.395029467	10.15925292	. 2339024281
4.63	8.987586089	2.402072001	10.17214751	. 2335398769
4.64	9.001777569	2.409118483	10.18503211	. 2331786084
4.65	9.015961126	2.416168901	10.19790675	. 2328186155
4.66	9.030136790	2.423223244	10.21077147	. 2324598913
4.67	9.044304592	2.430281502	10.22362630	. 2321024285
4.68	9.058464562	2.437343664	10.23647127	. 2317462202
4.69	9.072616730	2.444409719	10.24930642	. 2313912596
4.70	9.086761127	2.451479657	10.26213178	. 2310375396
4.71	9.100897783	2.458553466	10.27494739	. 2306850535
4.72	9.115026727	2.465631136	10.28775327	. 2303337945
4.73	9.129147988	2.472712656	10.30054946	. 2299837559
4.74	9.143261597	2.479798017	10.31333600	. 2296349309
4.75	9.157367582	2.486887206	10.32611291	. 2292873130
4.76	9.171465972	2.493980215	10.33888022	. 2289408956
4.77	9.185556796	2.501077032	10.35163798	. 2285956721
4.78	9.199640083	2.508177647	10.36438620	. 2282516360
4.79	9.213715861	2.515282050	10.37712493	. 2279087810
4.80	9.227784159	2.522390231	10.38985419	. 2275671007
4.81	9.241845005	2.529502179	10.40257401	. 2272265886
4.82	9.255898427	2.536617884	10.41528443	. 2268872386


4.83	9.269944452	2.543737336	10.42798548	. 2265490443
4.84	9.283983109	2.550860524	10.44067718	. 2262119996
4.85	9.298014425	2.557987440	10.45335958	. 2258760984
4.86	9.312038428	2.565118072	10.46603269	. 2255413344
4.87	9.326055143	2.572252411	10.47869654	. 2252077017
4.88	9.340064600	2.579390447	10.49135118	. 2248751942
4.89	9.354066824	2.586532169	10.50399663	. 2245438059
4.90	9.368061843	2.593677569	10.51663291	. 2242135310
4.91	9.382049682	2.600826636	10.52926006	. 2238843635
4.92	9.396030369	2.607979361	10.54187811	. 2235562976
4.93	9.410003930	2.615135733	10.55448708	. 2232293274
4.94	9.423970391	2.622295743	10.56708701	. 2229034473
4.95	9.437929778	2.629459382	10.57967793	. 2225786514
4.96	9.451882117	2.636626639	10.59225986	. 2222549341
4.97	9.465827433	2.643797505	10.60483283	. 2219322899
4.98	9.479765753	2.650971972	10.61739687	. 2216107130
4.99	9.493697101	2.658150028	10.62995201	. 2212901979
5.00	9.507621503	2.665331665	10.64249827	. 2209707391
5.01	9.521538984	2.672516873	10.65503569	. 2206523311
5.02	9.535449570	2.679705643	10.66756430	. 2203349684
5.03	9.549353284	2.686897966	10.68008411	. 2200186458
5.04	9.563250152	2.694093832	10.69259517	. 2197033577
5.05	9.577140199	2.701293232	10.70509748	. 2193890989
5.06	9.591023449	2.708496157	10.71759110	. 2190758641
5.07	9.604899926	2.715702597	10.73007603	. 2187636480
5.08	9.618769654	2.722912544	10.74255231	. 2184524455
5.09	9.632632658	2.730125988	10.75501996	. 2181422512
5.10	9.646488961	2.737342920	10.76747901	. 2178330602
5.11	9.660338588	2.744563331	10.77992950	. 2175248673
5.12	9.674181562	2.751787213	10.79237143	. 2172176673
5.13	9.688017906	2.759014556	10.80480485	. 2169114554
5.14	9.701847644	2.766245351	10.81722977	. 2166062264
5.15	9.715670800	2.773479589	10.82964622	. 2163019754
5.16	9.729487396	2.780717262	10.84205424	. 2159986975
5.17	9.743297455	2.787958360	10.85445383	. 2156963878
5.18	9.757101002	2.795202876	10.86684504	. 2153950414
5.19	9.770898057	2.802450799	10.87922788	. 2150946535
5.20	9.784688644	2.809702122	10.89160239	. 2147952193
5.21	9.798472787	2.816956835	10.90396858	. 2144967340
5.22	9.812250506	2.824214931	10.91632648	. 2141991929
5.23	9.826021824	2.831476400	10.92867612	. 2139025913
5.24	9.839786764	2.838741234	10.94101751	. 2136069244
5.25	9.853545348	2.846009424	10.95335070	. 2133121878
5.26	9.867297597	2.853280962	10.96567569	. 2130183768
5.27	9.881043534	2.860555839	10.97799252	. 2127254867
5.28	9.894783180	2.867834047	10.99030121	. 2124335131
5.29	9.908516556	2.875115578	11.00260179	. 2121424515
5.30	9.922243686	2.882400422	11.01489427	. 2118522973
5.31	9.935964589	2.889688572	11.02717868	. 2115630461
5.32	9.949679287	2.896980020	11.03945505	. 2112746936
5.33	9.963387801	2.904274756	11.05172340	. 2109872352
5.34	9.977090153	2.911572774	11.06398375	. 2107006666
5.35	9.990786363	2.918874064	11.07623613	. 2104149836
5.36	10.00447645	2.926178618	11.08848056	. 2101301817
5.37	10.01816044	2.933486429	11.10071706	. 2098462568
5.38	10.03183835	2.940797488	11.11294566	. 2095632045
5.39	10.04551020	2.948111786	11.12516638	. 2092810207
5.40	10.05917601	2.955429317	11.13737924	. 2089997012
5.41	10.07283581	2.962750072	11.14958427	. 2087192417
5.42	10.08648960	2.970074043	11.16178149	. 2084396382
5.43	10.10013742	2.977401221	11.17397092	. 2081608865
5.44	10.11377928	2.984731600	11.18615258	. 2078829826


5.45	10.12741521	2.992065170	11.19832650	. 2076059224
5.46	10.14104521	2.999401925	11.21049270	. 2073297019
5.47	10.15466932	3.006741856	11.22265120	. 2070543171
5.48	10.16828754	3.014084956	11.23480202	. 2067797639
5.49	10.18189991	3.021431217	11.24694518	. 2065060385
5.50	10.19550644	3.028780630	11.25908072	. 2062331370
5.51	10.20910715	3.036133189	11.27120864	. 2059610553
5.52	10.22270205	3.043488886	11.28332897	. 2056897897
5.53	10.23629118	3.050847712	11.29544173	. 2054193363
5.54	10.24987454	3.058209660	11.30754695	. 2051496912
5.55	10.26345215	3.065574723	11.31964464	. 2048808507
5.56	10.27702404	3.072942894	11.33173483	. 2046128110
5.57	10.29059023	3.080314163	11.34381753	. 2043455684
5.58	10.30415072	3.087688525	11.35589278	. 2040791190
5.59	10.31770555	3.095065971	11.36796058	. 2038134593
5.60	10.33125473	3.102446494	11.38002096	. 2035485855
5.61	10.34479827	3.109830087	11.39207395	. 2032844940
5.62	10.35833620	3.117216741	11.40411955	. 2030211811
5.63	10.37186853	3.124606451	11.41615780	. 2027586432
5.64	10.38539528	3.131999208	11.42818871	. 2024968768
5.65	10.39891648	3.139395005	11.44021230	. 2022358782
5.66	10.41243213	3.146793834	11.45222860	. 2019756440
5.67	10.42594225	3.154195689	11.46423762	. 2017161706
5.68	10.43944688	3.161600563	11.47623938	. 2014574545
5.69	10.45294601	3.169008447	11.48823391	. 2011994922
5.70	10.46643967	3.176419335	11.50022122	. 2009422803
5.71	10.47992787	3.183833219	11.51220134	. 2006858154
5.72	10.49341064	3.191250093	11.52417427	. 2004300940
5.73	10.50688799	3.198669950	11.53614005	. 2001751127
5.74	10.52035994	3.206092781	11.54809870	. 1999208683
5.75	10.53382650	3.213518581	11.56005022	. 1996673572
5.76	10.54728770	3.220947342	11.57199465	. 1994145763
5.77	10.56074354	3.228379057	11.58393200	. 1991625222
5.78	10.57419405	3.235813719	11.59586228	. 1989111916
5.79	10.58763925	3.243251322	11.60778553	. 1986605812
5.80	10.60107914	3.250691857	11.61970175	. 1984106878
5.81	10.61451375	3.258135319	11.63161098	. 1981615082
5.82	10.62794309	3.265581700	11.64351321	. 1979130392
5.83	10.64136718	3.273030994	11.65540848	. 1976652776
5.84	10.65478604	3.280483194	11.66729681	. 1974182202
5.85	10.66819968	3.287938292	11.67917820	. 1971718638
5.86	10.68160812	3.295396283	11.69105269	. 1969262054
5.87	10.69501137	3.302857159	11.70292029	. 1966812419
5.88	10.70840945	3.310320913	11.71478101	. 1964369701
5.89	10.72180238	3.317787540	11.72663488	. 1961933869
5.90	10.73519017	3.325257031	11.73848191	. 1959504894
5.91	10.74857284	3.332729382	11.75032212	. 1957082745
5.92	10.76195041	3.340204584	11.76215554	. 1954667391
5.93	10.77532288	3.347682631	11.77398217	. 1952258803
5.94	10.78869028	3.355163517	11.78580203	. 1949856951
5.95	10.80205263	3.362647235	11.79761515	. 1947461806
5.96	10.81540992	3.370133779	11.80942155	. 1945073337
5.97	10.82876220	3.377623141	11.82122123	. 1942691516
5.98	10.84210945	3.385115317	11.83301421	. 1940316314
5.99	10.85545172	3.392610298	11.84480052	. 1937947701
6.00	10.86878900	3.400108079	11.85658017	. 1935585649
6.01	10.88212131	3.407608653	11.86835318	. 1933230130
6.02	10.89544867	3.415112014	11.88011957	. 1930881114
6.03	10.90877109	3.422618155	11.89187935	. 1928538574
6.04	10.92208860	3.430127070	11.90363254	. 1926202482
6.05	10.93540119	3.437638753	11.91537915	. 1923872810
6.06	10.94870890	3.445153197	11.92711921	. 1921549529


6.07	10.96201173	3.452670396	11.93885273	. 1919232613
6.08	10.97530969	3.460190344	11.95057973	1916922035
6.09	10.98860281	3.467713034	11.96230023	. 1914617766
6.10	11.00189109	3.475238461	11.97401423	. 1912319779
6.11	11.01517456	3.482766617	11.98572176	1910028049
6.12	11.02845321	3.490297498	11.99742284	. 1907742548
6.13	11.04172708	3.497831096	12.00911748	. 1905463249
6.14	11.05499618	3.505367406	12.02080569	. 1903190126
6.15	11.06826051	3.512906421	12.03248750	. 1900923152
6.16	11.08152009	3.520448136	12.04416292	1898662303
6.17	11.09477495	3.527992544	12.05583196	1896407551
6.18	11.10802508	3.535539639	12.06749465	. 1894158870
6.19	11.12127050	3.543089415	12.07915099	1891916236
6.20	11.13451124	3.550641866	12.09080101	. 1889679622
6.21	11.14774729	3.558196987	12.10244472	. 1887449003
6.22	11.16097869	3.565754770	12.11408213	. 1885224354
6.23	11.17420543	3.573315211	12.12571326	. 1883005649
6.24	11.18742753	3.580878303	12.13733813	1880792865
6.25	11.20064502	3.588444041	12.14895676	. 1878585975
6.26	11.21385789	3.596012418	12.16056915	. 1876384956
6.27	11.22706617	3.603583428	12.17217533	. 1874189782
6.28	11.24026986	3.611157066	12.18377530	. 1872000429
6.29	11.25346898	3.618733326	12.19536910	. 1869816874
6.30	11.26666355	3.626312202	12.20695672	. 1867639092
6.31	11.27985358	3.633893689	12.21853818	. 1865467058
6.32	11.29303907	3.641477780	12.23011351	. 1863300750
6.33	11.30622005	3.649064469	12.24168271	. 1861140143
6.34	11.31939653	3.656653752	12.25324580	. 1858985214
6.35	11.33256852	3.664245622	12.26480280	. 1856835939
6.36	11.34573602	3.671840074	12.27635372	. 1854692296
6.37	11.35889907	3.679437101	12.28789857	. 1852554260
6.38	11.37205766	3.687036699	12.29943738	. 1850421809
6.39	11.38521181	3.694638861	12.31097015	. 1848294920
6.40	11.39836154	3.702243583	12.32249690	. 1846173570
6.41	11.41150685	3.709850857	12.33401764	. 1844057737
6.42	11.42464776	3.717460680	12.34553239	. 1841947398
6.43	11.43778428	3.725073045	12.35704117	. 1839842530
6.44	11.45091643	3.732687947	12.36854398	. 1837743111
6.45	11.46404421	3.740305379	12.38004085	. 1835649120
6.46	11.47716764	3.747925338	12.39153178	. 1833560533
6.47	11.49028673	3.755547816	12.40301679	. 1831477330
6.48	11.50340150	3.763172810	12.41449590	. 1829399488
6.49	11.51651195	3.770800312	12.42596911	. 1827326985
6.50	11.52961810	3.778430319	12.43743646	. 1825259801
6.51	11.54271996	3.786062824	12.44889793	. 1823197913
6.52	11.55581754	3.793697821	12.46035356	. 1821141301
6.53	11.56891085	3.801335307	12.47180336	. 1819089943
6.54	11.58199991	3.808975275	12.48324733	. 1817043818
6.55	11.59508473	3.816617719	12.49468550	. 1815002905
6.56	11.60816532	3.824262636	12.50611787	. 1812967183
6.57	11.62124169	3.831910018	12.51754446	. 1810936632
6.58	11.63431385	3.839559862	12.52896529	. 1808911230
6.59	11.64738182	3.847212161	12.54038037	. 1806890958
6.60	11.66044561	3.854866911	12.55178970	. 1804875795
6.61	11.67350522	3.862524106	12.56319331	. 1802865721
6.62	11.68656067	3.870183741	12.57459121	. 1800860715
6.63	11.69961197	3.877845810	12.58598342	. 1798860757
6.64	11.71265914	3.885510310	12.59736993	. 1796865828
6.65	11.72570218	3.893177234	12.60875078	. 1794875907
6.66	11.73874111	3.900846577	12.62012596	. 1792890976
6.67	11.75177593	3.908518334	12.63149550	. 1790911013
6.68	11.76480666	3.916192500	12.64285941	. 1788936000


6.69	11.77783331	3.923869070	12.65421770	1786965918
6.70	11.79085590	3.931548039	12.66557038	1785000746
6.71	11.80387442	3.939229402	12.67691747	1783040466
6.72	11.81688890	3.946913153	12.68825898	1781085058
6.73	11.82989934	3.954599288	12.69959493	. 1779134504
6.74	11.84290575	3.962287802	12.71092531	. 1777188785
6.75	11.85590815	3.969978690	12.72225016	. 1775247881
6.76	11.86890655	3.977671946	12.73356948	. 1773311774
6.77	11.88190096	3.985367565	12.74488328	1771380446
6.78	11.89489138	3.993065544	12.75619158	. 1769453878
6.79	11.90787783	4.000765876	12.76749438	. 1767532051
6.80	11.92086032	4.008468557	12.77879171	1765614948
6.81	11.93383887	4.016173582	12.79008357	. 1763702549
6.82	11.94681347	4.023880946	12.80136998	. 1761794838
6.83	11.95978415	4.031590644	12.81265094	1759891795
6.84	11.97275091	4.039302671	12.82392648	. 1757993403
6.85	11.98571376	4.047017023	12.83519660	1756099644
6.86	11.99867272	4.054733695	12.84646132	. 1754210500
6.87	12.01162778	4.062452681	12.85772064	. 1752325954
6.88	12.02457898	4.070173977	12.86897459	1750445988
6.89	12.03752631	4.077897579	12.88022316	. 1748570584
6.90	12.05046978	4.085623481	12.89146638	1746699725
6.91	12.06340941	4.093351679	12.90270426	. 1744833395
6.92	12.07634520	4.101082167	12.91393680	. 1742971575
6.93	12.08927717	4.108814942	12.92516403	. 1741114248
6.94	12.10220532	4.116549999	12.93638594	1739261398
6.95	12.11512967	4.124287332	12.94760256	. 1737413008
6.96	12.12805023	4.132026937	12.95881390	1735569061
6.97	12.14096700	4.139768810	12.97001996	1733729539
6.98	12.15387999	4.147512946	12.98122076	. 1731894427
6.99	12.16678923	4.155259340	12.99241631	. 1730063707
7.00	12.17969471	4.163007987	13.00360663	. 1728237363
7.01	12.19259644	4.170758883	13.01479171	. 1726415380
7.02	12.20549444	4.178512024	13.02597159	1724597739
7.03	12.21838871	4.186267405	13.03714626	. 1722784426
7.04	12.23127927	4.194025020	13.04831574	. 1720975424
7.05	12.24416612	4.201784867	13.05948004	1719170717
7.06	12.25704928	4.209546939	13.07063916	. 1717370289
7.07	12.26992875	4.217311233	13.08179314	. 1715574123
7.08	12.28280455	4.225077745	13.09294196	. 1713782205
7.09	12.29567667	4.232846469	13.10408565	. 1711994518
7.10	12.30854514	4.240617401	13.11522422	1710211047
7.11	12.32140996	4.248390536	13.12635767	1708431776
7.12	12.33427115	4.256165871	13.13748602	. 1706656689
7.13	12.34712870	4.263943401	13.14860928	1704885772
7.14	12.35998263	4.271723121	13.15972746	1703119008
7.15	12.37283295	4.279505027	13.17084058	. 1701356383
7.16	12.38567968	4.287289114	13.18194863	. 1699597881
7.17	12.39852280	4.295075379	13.19305164	. 1697843487
7.18	12.41136235	4.302863816	13.20414961	1696093186
7.19	12.42419832	4.310654422	13.21524256	1694346963
7.20	12.43703073	4.318447192	13.22633049	. 1692604804
7.21	12.44985958	4.326242122	13.23741342	. 1690866692
7.22	12.46268489	4.334039207	13.24849136	. 1689132614
7.23	12.47550666	4.341838443	13.25956431	. 1687402555
7.24	12.48832490	4.349639827	13.27063230	. 1685676500
7.25	12.50113962	4.357443352	13.28169532	. 1683954435
7.26	12.51395083	4.365249016	13.29275339	. 1682236345
7.27	12.52675853	4.373056815	13.30380652	1680522216
7.28	12.53956275	4.380866742	13.31485473	. 1678812033
7.29	12.55236348	4.388678796	13.32589801	. 1677105782
7.30	12.56516074	4.396492971	13.33693639	1675403450


7.31	12.57795453	4.404309263	13.34796986	. 1673705021
7.32	12.59074486	4.412127668	13.35899845	. 1672010482
7.33	12.60353174	4.419948182	13.37002217	. 1670319819
7.34	12.61631519	4.427770801	13.38104101	. 1668633018
7.35	12.62909520	4.435595520	13.39205500	. 1666950065
7.36	12.64187179	4.443422335	13.40306414	. 1665270947
7.37	12.65464496	4.451251243	13.41406844	. 1663595649
7.38	12.66741473	4.459082239	13.42506792	. 1661924158
7.39	12.68018110	4.466915319	13.43606258	. 1660256460
7.40	12.69294408	4.474750478	13.44705244	. 1658592542
7.41	12.70570368	4.482587714	13.45803750	. 1656932391
7.42	12.71845991	4.490427022	13.46901777	. 1655275993
7.43	12.73121278	4.498268397	13.47999327	. 1653623335
7.44	12.74396229	4.506111836	13.49096400	. 1651974403
7.45	12.75670845	4.513957335	13.50192997	. 1650329184
7.46	12.76945127	4.521804889	13.51289119	. 1648687666
7.47	12.78219077	4.529654495	13.52384768	. 1647049835
7.48	12.79492694	4.537506149	13.53479944	. 1645415678
7.49	12.80765979	4.545359847	13.54574649	. 1643785182
7.50	12.82038934	4.553215584	13.55668882	. 1642158334
7.51	12.83311559	4.561073357	13.56762646	. 1640535122
7.52	12.84583856	4.568933162	13.57855941	. 1638915533
7.53	12.85855824	4.576794995	13.58948768	. 1637299554
7.54	12.87127464	4.584658851	13.60041128	. 1635687173
7.55	12.88398778	4.592524728	13.61133022	. 1634078376
7.56	12.89669767	4.600392621	13.62224452	. 1632473152
7.57	12.90940430	4.608262527	13.63315416	. 1630871488
7.58	12.92210769	4.616134441	13.64405918	. 1629273371
7.59	12.93480785	4.624008359	13.65495958	. 1627678790
7.60	12.94750478	4.631884278	13.66585536	. 1626087731
7.61	12.96019849	4.639762194	13.67674654	. 1624500184
7.62	12.97288899	4.647642104	13.68763313	. 1622916135
7.63	12.98557629	4.655524002	13.69851513	. 1621335572
7.64	12.99826040	4.663407886	13.70939256	. 1619758484
7.65	13.01094131	4.671293751	13.72026542	. 1618184859
7.66	13.02361905	4.679181594	13.73113372	. 1616614684
7.67	13.03629361	4.687071412	13.74199748	. 1615047947
7.68	13.04896501	4.694963200	13.75285669	. 1613484638
7.69	13.06163326	4.702856954	13.76371138	. 1611924744
7.70	13.07429835	4.710752671	13.77456154	. 1610368253
7.71	13.08696030	4.718650347	13.78540720	. 1608815154
7.72	13.09961912	4.726549979	13.79624835	. 1607265435
7.73	13.11227481	4.734451562	13.80708500	. 1605719085
7.74	13.12492739	4.742355093	13.81791718	. 1604176092
7.75	13.13757685	4.750260569	13.82874487	. 1602636445
7.76	13.15022320	4.758167985	13.83956810	. 1601100132
7.77	13.16286646	4.766077338	13.85038688	. 1599567142
7.78	13.17550663	4.773988625	13.86120120	. 1598037464
7.79	13.18814372	4.781901841	13.87201108	. 1596511087
7.80	13.20077773	4.789816983	13.88281653	. 1594987999
7.81	13.21340867	4.797734047	13.89361756	. 1593468189
7.82	13.22603656	4.805653031	13.90441417	. 1591951646
7.83	13.23866139	4.813573929	13.91520637	. 1590438359
7.84	13.25128317	4.821496739	13.92599418	. 1588928318
7.85	13.26390192	4.829421458	13.93677761	. 1587421511
7.86	13.27651763	4.837348080	13.94755665	. 1585917927
7.87	13.28913032	4.845276604	13.95833132	. 1584417556
7.88	13.30173999	4.853207024	13.96910162	. 1582920386
7.89	13.31434665	4.861139339	13.97986758	. 1581426408
7.90	13.32695031	4.869073544	13.99062918	. 1579935610
7.91	13.33955097	4.877009636	14.00138645	. 1578447982
7.92	13.35214864	4.884947611	14.01213940	. 1576963514


7.93	13.36474333	4.892887465	14.02288802	. 1575482194
7.94	13.37733504	4.900829196	14.03363232	. 1574004012
7.95	13.38992379	4.908772800	14.04437233	. 1572528958
7.96	13.40250957	4.916718273	14.05510804	. 1571057022
7.97	13.41509240	4.924665611	14.06583946	. 1569588192
7.98	13.42767228	4.932614812	14.07656660	. 1568122460
7.99	13.44024922	4.940565873	14.08728947	. 1566659814
8.00	13.45282323	4.948518788	14.09800808	. 1565200245
8.01	13.46539430	4.956473556	14.10872244	. 1563743741
8.02	13.47796246	4.964430172	14.11943255	. 1562290294
8.03	13.49052770	4.972388634	14.13013842	. 1560839893
8.04	13.50309004	4.980348937	14.14084006	. 1559392529
8.05	13.51564947	4.988311080	14.15153747	. 1557948190
8.06	13.52820601	4.996275057	14.16223068	. 1556506867
8.07	13.54075967	5.004240866	14.17291968	. 1555068551
8.08	13.55331044	5.012208503	14.18360448	. 1553633231
8.09	13.56585834	5.020177965	14.19428509	. 1552200898
8.10	13.57840337	5.028149250	14.20496152	. 1550771542
8.11	13.59094553	5.036122352	14.21563377	. 1549345153
8.12	13.60348485	5.044097270	14.22630186	. 1547921722
8.13	13.61602132	5.052073999	14.23696579	. 1546501239
8.14	13.62855494	5.060052537	14.24762557	. 1545083694
8.15	13.64108573	5.068032880	14.25828121	. 1543669078
8.16	13.65361369	5.076015025	14.26893271	. 1542257381
8.17	13.66613883	5.083998969	14.27958008	. 1540848595
8.18	13.67866115	5.091984708	14.29022334	. 1539442709
8.19	13.69118067	5.099972239	14.30086248	. 1538039714
8.20	13.70369738	5.107961559	14.31149752	. 1536639601
8.21	13.71621129	5.115952664	14.32212846	. 1535242360
8.22	13.72872241	5.123945552	14.33275532	. 1533847983
8.23	13.74123075	5.131940220	14.34337809	. 1532456460
8.24	13.75373631	5.139936663	14.35399679	. 1531067782
8.25	13.76623910	5.147934879	14.36461142	. 1529681940
8.26	13.77873912	5.155934864	14.37522200	. 1528298924
8.27	13.79123638	5.163936616	14.38582852	. 1526918726
8.28	13.80373089	5.171940131	14.39643100	. 1525541337
8.29	13.81622266	5.179945407	14.40702945	. 1524166748
8.30	13.82871168	5.187952439	14.41762387	. 1522794950
8.31	13.84119796	5.195961225	14.42821426	. 1521425933
8.32	13.85368152	5.203971761	14.43880064	. 1520059690
8.33	13.86616236	5.211984045	14.44938302	. 1518696211
8.34	13.87864048	5.219998074	14.45996140	. 1517335487
8.35	13.89111589	5.228013844	14.47053578	. 1515977511
8.36	13.90358859	5.236031352	14.48110618	. 1514622272
8.37	13.91605859	5.244050594	14.49167261	. 1513269763
8.38	13.92852591	5.252071569	14.50223506	. 1511919975
8.39	13.94099053	5.260094273	14.51279355	. 1510572899
8.40	13.95345248	5.268118703	14.52334809	. 1509228526
8.41	13.96591175	5.276144855	14.53389868	. 1507886849
8.42	13.97836835	5.284172727	14.54444533	. 1506547859
8.43	13.99082229	5.292202316	14.55498804	. 1505211547
8.44	14.00327357	5.300233618	14.56552683	. 1503877905
8.45	14.01572220	5.308266631	14.57606170	. 1502546925
8.46	14.02816818	5.316301352	14.58659266	. 1501218597
8.47	14.04061153	5.324337777	14.59711971	. 1499892915
8.48	14.05305224	5.332375903	14.60764286	. 1498569869
8.49	14.06549032	5.340415728	14.61816212	. 1497249452
8.50	14.07792578	5.348457249	14.62867750	. 1495931655
8.51	14.09035862	5.356500462	14.63918900	. 1494616470
8.52	14.10278885	5.364545365	14.64969663	. 1493303890
8.53	14.11521647	5.372591955	14.66020040	. 1491993905
8.54	14.12764150	5.380640228	14.67070031	. 1490686508


8.55	14.14006393	5.388690182	14.68119637	. 1489381691
8.56	14.15248377	5.396741813	14.69168858	. 1488079445
8.57	14.16490103	5.404795120	14.70217697	. 1486779764
8.58	14.17731572	5.412850098	14.71266152	. 1485482639
8.59	14.18972783	5.420906746	14.72314225	. 1484188062
8.60	14.20213737	5.428965059	14.73361917	. 1482896025
8.61	14.21454436	5.437025036	14.74409228	. 1481606521
8.62	14.22694878	5.445086673	14.75456158	. 1480319541
8.63	14.23935066	5.453149968	14.76502709	. 1479035078
8.64	14.25175000	5.461214917	14.77548882	. 1477753125
8.65	14.26414679	5.469281517	14.78594676	. 1476473673
8.66	14.27654106	5.477349767	14.79640092	. 1475196715
8.67	14.28893279	5.485419662	14.80685132	. 1473922244
8.68	14.30132200	5.493491201	14.81729796	. 1472650251
8.69	14.31370870	5.501564379	14.82774084	. 1471380729
8.70	14.32609288	5.509639195	14.83817997	. 1470113671
8.71	14.33847456	5.517715646	14.84861536	. 1468849069
8.72	14.35085373	5.525793729	14.85904702	. 1467586916
8.73	14.36323041	5.533873440	14.86947495	. 1466327204
8.74	14.37560460	5.541954778	14.87989915	. 1465069926
8.75	14.38797630	5.550037738	14.89031964	. 1463815074
8.76	14.40034553	5.558122320	14.90073642	. 1462562642
8.77	14.41271228	5.566208519	14.91114950	. 1461312621
8.78	14.42507656	5.574296333	14.92155888	. 1460065005
8.79	14.43743837	5.582385760	14.93196457	. 1458819786
8.80	14.44979773	5.590476796	14.94236657	. 1457576957
8.81	14.46215463	5.598569439	14.95276490	. 1456336511
8.82	14.47450909	5.606663685	14.96315956	. 1455098441
8.83	14.48686110	5.614759533	14.97355056	. 1453862740
8.84	14.49921067	5.622856980	14.98393789	. 1452629400
8.85	14.51155781	5.630956022	14.99432158	. 1451398414
8.86	14.52390252	5.639056657	15.00470162	. 1450169776
8.87	14.53624481	5.647158882	15.01507802	. 1448943478
8.88	14.54858468	5.655262696	15.02545078	. 1447719514
8.89	14.56092214	5.663368094	15.03581992	. 1446497876
8.90	14.57325718	5.671475074	15.04618544	. 1445278557
8.91	14.58558983	5.679583634	15.05654735	. 1444061552
8.92	14.59792008	5.687693771	15.06690565	. 1442846852
8.93	14.61024793	5.695805482	15.07726034	. 1441634450
8.94	14.62257340	5.703918765	15.08761144	. 1440424341
8.95	14.63489649	5.712033616	15.09795895	. 1439216517
8.96	14.64721719	5.720150034	15.10830287	. 1438010972
8.97	14.65953553	5.728268016	15.11864322	. 1436807699
8.98	14.67185149	5.736387558	15.12898000	. 1435606690
8.99	14.68416509	5.744508659	15.13931321	. 1434407940
9.00	14.69647634	5.752631315	15.14964286	. 1433211442
9.01	14.70878523	5.760755525	15.15996896	. 1432017189
9.02	14.72109177	5.768881285	15.17029151	. 1430825174
9.03	14.73339596	5.777008593	15.18061052	. 1429635391
9.04	14.74569782	5.785137446	15.19092600	. 1428447834
9.05	14.75799735	5.793267842	15.20123794	. 1427262495
9.06	14.77029454	5.801399778	15.21154636	. 1426079369
9.07	14.78258941	5.809533252	15.22185127	. 1424898449
9.08	14.79488196	5.817668261	15.23215266	. 1423719729
9.09	14.80717219	5.825804802	15.24245055	. 1422543201
9.10	14.81946012	5.833942873	15.25274493	. 1421368860
9.11	14.83174574	5.842082471	15.26303583	. 1420196699
9.12	14.84402905	5.850223595	15.27332323	. 1419026713
9.13	14.85631008	5.858366240	15.28360715	. 1417858893
9.14	14.86858881	5.866510405	15.29388760	. 1416693236
9.15	14.88086525	5.874656087	15.30416458	. 1415529733
9.16	14.89313941	5.882803284	15.31443809	. 1414368379


9.17	14.90541129	5.890951994	15.32470814	. 1413209168
9.18	14.91768090	5.899102213	15.33497473	. 1412052093
9.19	14.92994824	5.907253939	15.34523788	. 1410897149
9.20	14.94221332	5.915407169	15.35549759	. 1409744328
9.21	14.95447613	5.923561902	15.36575386	. 1408593626
9.22	14.96673670	5.931718135	15.37600670	. 1407445035
9.23	14.97899501	5.939875864	15.38625612	. 1406298550
9.24	14.99125108	5.948035089	15.39650211	. 1405154166
9.25	15.00350490	5.956195806	15.40674469	. 1404011874
9.26	15.01575649	5.964358013	15.41698387	. 1402871671
9.27	15.02800585	5.972521707	15.42721964	. 1401733549
9.28	15.04025298	5.980686886	15.43745201	. 1400597503
9.29	15.05249788	5.988853548	15.44768100	. 1399463527
9.30	15.06474057	5.997021689	15.45790659	. 1398331615
9.31	15.07698104	6.005191309	15.46812881	. 1397201762
9.32	15.08921930	6.013362404	15.47834765	. 1396073960
9.33	15.10145536	6.021534971	15.48856312	. 1394948205
9.34	15.11368921	6.029709009	15.49877523	. 1393824490
9.35	15.12592087	6.037884515	15.50898398	. 1392702810
9.36	15.13815034	6.046061487	15.51918938	. 1391583159
9.37	15.15037762	6.054239922	15.52939143	. 1390465532
9.38	15.16260271	6.062419818	15.53959014	. 1389349922
9.39	15.17482563	6.070601172	15.54978551	. 1388236324
9.40	15.18704637	6.078783982	15.55997755	. 1387124732
9.41	15.19926494	6.086968247	15.57016626	. 1386015140
9.42	15.21148134	6.095153962	15.58035165	. 1384907543
9.43	15.22369558	6.103341127	15.59053373	. 1383801936
9.44	15.23590766	6.111529738	15.60071250	. 1382698312
9.45	15.24811759	6.119719794	15.61088797	. 1381596667
9.46	15.26032537	6.127911292	15.62106013	. 1380496993
9.47	15.27253101	6.136104229	15.63122900	. 1379399287
9.48	15.28473450	6.144298604	15.64139458	. 1378303542
9.49	15.29693586	6.152494414	15.65155688	. 1377209754
9.50	15.30913508	6.160691657	15.66171590	. 1376117915
9.51	15.32133218	6.168890330	15.67187165	. 1375028022
9.52	15.33352715	6.177090431	15.68202413	. 1373940069
9.53	15.34572000	6.185291958	15.69217335	. 1372854049
9.54	15.35791074	6.193494909	15.70231931	. 1371769959
9.55	15.37009936	6.201699280	15.71246202	. 1370687792
9.56	15.38228587	6.209905071	15.72260148	. 1369607543
9.57	15.39447029	6.218112279	15.73273771	. 1368529207
9.58	15.40665260	6.226320901	15.74287069	. 1367452779
9.59	15.41883282	6.234530935	15.75300044	. 1366378253
9.60	15.43101094	6.242742379	15.76312697	. 1365305623
9.61	15.44318698	6.250955231	15.77325027	. 1364234886
9.62	15.45536094	6.259169489	15.78337036	. 1363166035
9.63	15.46753281	6.267385149	15.79348724	. 1362099065
9.64	15.47970261	6.275602210	15.80360091	. 1361033971
9.65	15.49187034	6.283820671	15.81371138	. 1359970749
9.66	15.50403600	6.292040527	15.82381866	. 1358909392
9.67	15.51619960	6.300261778	15.83392274	. 1357849896
9.68	15.52836114	6.308484421	15.84402364	. 1356792255
9.69	15.54052063	6.316708454	15.85412136	. 1355736465
9.70	15.55267806	6.324933875	15.86421590	. 1354682520
9.71	15.56483345	6.333160681	15.87430727	. 1353630415
9.72	15.57698679	6.341388870	15.88439548	. 1352580146
9.73	15.58913809	6.349618440	15.89448052	. 1351531707
9.74	15.60128736	6.357849390	15.90456241	. 1350485094
9.75	15.61343459	6.366081716	15.91464114	. 1349440301
9.76	15.62557980	6.374315416	15.92471673	. 1348397323
9.77	15.63772298	6.382550489	15.93478918	. 1347356156
9.78	15.64986415	6.390786932	15.94485849	. 1346316794


9.79	15.66200329	6.399024743	15.95492467	1345279232
9.80	15.67414043	6.407263921	15.96498773	. 1344243467
9.81	15.68627555	6.415504462	15.97504766	1343209492
9.82	15.69840868	6.423746364	15.98510447	. 1342177304
9.83	15.71053980	6.431989626	15.99515817	. 1341146896
9.84	15.72266892	6.440234246	16.00520877	. 1340118265
9.85	15.73479605	6.448480220	16.01525626	. 1339091406
9.86	15.74692119	6.456727548	16.02530065	1338066313
9.87	15.75904434	6.464976227	16.03534195	1337042982
9.88	15.77116551	6.473226255	16.04538016	. 1336021409
9.89	15.78328470	6.481477629	16.05541529	. 1335001588
9.90	15.79540192	6.489730349	16.06544734	. 1333983515
9.91	15.80751717	6.497984410	16.07547631	. 1332967186
9.92	15.81963045	6.506239813	16.08550222	. 1331952595
9.93	15.83174177	6.514496554	16.09552506	. 1330939737
9.94	15.84385112	6.522754631	16.10554484	. 1329928609
9.95	15.85595852	6.531014042	16.11556156	. 1328919205
9.96	15.86806397	6.539274786	16.12557523	. 1327911522
9.97	15.88016747	6.547536860	16.13558586	. 1326905554
9.98	15.89226902	6.555800262	16.14559344	. 1325901296
9.99	15.90436863	6.564064989	16.15559799	. 1324898745
10.00	15.91646631	6.572331041	16.16559950	. 1323897896
10.01	15.92856205	6.580598415	16.17559799	. 1322898744
10.02	15.94065586	6.588867109	16.18559346	. 1321901284
10.03	15.95274774	6.597137120	16.19558590	. 1320905513
10.04	15.96483770	6.605408448	16.20557533	. 1319911426
10.05	15.97692573	6.613681089	16.21556175	. 1318919017
10.06	15.98901186	6.621955042	16.22554517	. 1317928284
10.07	16.00109607	6.630230304	16.23552558	. 1316939221
10.08	16.01317836	6.638506875	16.24550300	. 1315951824
10.09	16.02525876	6.646784751	16.25547743	. 1314966089
10.10	16.03733725	6.655063931	16.26544887	. 1313982011
10.11	16.04941384	6.663344412	16.27541732	. 1312999586
10.12	16.06148854	6.671626193	16.28538280	. 1312018809
10.13	16.07356134	6.679909272	16.29534531	. 1311039676
10.14	16.08563226	6.688193647	16.30530485	. 1310062184
10.15	16.09770129	6.696479316	16.31526142	. 1309086327
10.16	16.10976844	6.704766276	16.32521503	. 1308112101
10.17	16.12183372	6.713054527	16.33516568	. 1307139502
10.18	16.13389711	6.721344065	16.34511338	. 1306168527
10.19	16.14595864	6.729634889	16.35505814	. 1305199169
10.20	16.15801830	6.737926997	16.36499995	. 1304231426
10.21	16.17007610	6.746220387	16.37493883	. 1303265293
10.22	16.18213203	6.754515057	16.38487477	. 1302300766
10.23	16.19418611	6.762811005	16.39480778	. 1301337841
10.24	16.20623833	6.771108229	16.40473786	. 1300376513
10.25	16.21828870	6.779406728	16.41466503	. 1299416779
10.26	16.23033723	6.787706498	16.42458927	. 1298458634
10.27	16.24238391	6.796007540	16.43451061	. 1297502074
10.28	16.25442875	6.804309849	16.44442903	. 1296547096
10.29	16.26647176	6.812613426	16.45434455	. 1295593694
10.30	16.27851293	6.820918266	16.46425717	. 1294641865
10.31	16.29055227	6.829224370	16.47416690	. 1293691605
10.32	16.30258978	6.837531734	16.48407374	. 1292742910
10.33	16.31462547	6.845840358	16.49397768	. 1291795776
10.34	16.32665933	6.854150238	16.50387875	. 1290850198
10.35	16.33869138	6.862461373	16.51377693	. 1289906173
10.36	16.35072162	6.870773762	16.52367225	. 1288963697
10.37	16.36275005	6.879087402	16.53356469	. 1288022765
10.38	16.37477666	6.887402291	16.54345426	. 1287083375
10.39	16.38680148	6.895718429	16.55334098	. 1286145521
10.40	16.39882449	6.904035811	16.56322483	. 1285209200


10.41	16.41084571	6.912354438	16.57310584	. 1284274408
10.42	16.42286513	6.920674307	16.58298399	1283341141
10.43	16.43488276	6.928995416	16.59285930	. 1282409396
10.44	16.44689860	6.937317763	16.60273176	. 1281479168
10.45	16.45891265	6.945641347	16.61260139	1280550453
10.46	16.47092493	6.953966165	16.62246819	. 1279623248
10.47	16.48293542	6.962292216	16.63233216	. 1278697548
10.48	16.49494414	6.970619498	16.64219330	. 1277773351
10.49	16.50695109	6.978948009	16.65205162	. 1276850652
10.50	16.51895627	6.987277747	16.66190713	. 1275929447
10.51	16.53095968	6.995608711	16.67175982	. 1275009732
10.52	16.54296133	7.003940898	16.68160970	. 1274091504
10.53	16.55496122	7.012274308	16.69145678	. 1273174760
10.54	16.56695936	7.020608937	16.70130106	. 1272259494
10.55	16.57895574	7.028944784	16.71114254	. 1271345704
10.56	16.59095037	7.037281848	16.72098123	. 1270433386
10.57	16.60294325	7.045620127	16.73081714	. 1269522536
10.58	16.61493439	7.053959618	16.74065025	. 1268613150
10.59	16.62692379	7.062300320	16.75048059	. 1267705225
10.60	16.63891145	7.070642232	16.76030815	. 1266798757
10.61	16.65089738	7.078985351	16.77013293	. 1265893743
10.62	16.66288157	7.087329675	16.77995495	. 1264990178
10.63	16.67486403	7.095675204	16.78977421	. 1264088059
10.64	16.68684477	7.104021934	16.79959070	. 1263187382
10.65	16.69882379	7.112369865	16.80940443	. 1262288145
10.66	16.71080109	7.120718995	16.81921542	. 1261390343
10.67	16.72277667	7.129069321	16.82902365	. 1260493972
10.68	16.73475053	7.137420843	16.83882914	. 1259599030
10.69	16.74672269	7.145773558	16.84863188	. 1258705512
10.70	16.75869313	7.154127464	16.85843189	. 1257813415
10.71	16.77066188	7.162482560	16.86822917	. 1256922736
10.72	16.78262892	7.170838845	16.87802371	. 1256033470
10.73	16.79459426	7.179196315	16.88781553	. 1255145615
10.74	16.80655791	7.187554971	16.89760463	. 1254259167
10.75	16.81851986	7.195914809	16.90739101	. 1253374122
10.76	16.83048013	7.204275828	16.91717467	. 1252490477
10.77	16.84243870	7.212638027	16.92695563	. 1251608229
10.78	16.85439560	7.221001403	16.93673387	. 1250727374
10.79	16.86635081	7.229365956	16.94650942	. 1249847908
10.80	16.87830434	7.237731683	16.95628226	. 1248969829
10.81	16.89025620	7.246098582	16.96605241	. 1248093132
10.82	16.90220639	7.254466653	16.97581987	. 1247217815
10.83	16.91415490	7.262835893	16.98558463	. 1246343873
10.84	16.92610176	7.271206300	16.99534672	. 1245471304
10.85	16.93804694	7.279577873	17.00510612	. 1244600105
10.86	16.94999047	7.287950610	17.01486285	. 1243730271
10.87	16.96193233	7.296324509	17.02461690	. 1242861800
10.88	16.97387255	7.304699570	17.03436828	. 1241994687
10.89	16.98581111	7.313075789	17.04411700	. 1241128931
10.90	16.99774802	7.321453166	17.05386306	. 1240264527
10.91	17.00968328	7.329831699	17.06360646	. 1239401472
10.92	17.02161690	7.338211386	17.07334720	. 1238539764
10.93	17.03354888	7.346592225	17.08308529	. 1237679397
10.94	17.04547922	7.354974215	17.09282073	. 1236820371
10.95	17.05740793	7.363357354	17.10255353	. 1235962680
10.96	17.06933500	7.371741641	17.11228369	. 1235106322
10.97	17.08126045	7.380127073	17.12201122	. 1234251293
10.98	17.09318426	7.388513650	17.13173611	. 1233397591
10.99	17.10510645	7.396901369	17.14145837	. 1232545213
11.00	17.11702702	7.405290229	17.15117800	. 1231694154
11.01	17.12894598	7.413680228	17.16089502	. 1230844411
11.02	17.14086331	7.422071365	17.17060941	. 1229995983


11.03	17.15277904	7.430463638	17.18032119	. 1229148865
11.04	17.16469315	7.438857046	17.19003036	1228303053
11.05	17.17660565	7.447251586	17.19973692	. 1227458546
11.06	17.18851655	7.455647257	17.20944088	. 1226615340
11.07	17.20042585	7.464044058	17.21914223	1225773432
11.08	17.21233355	7.472441987	17.22884099	. 1224932818
11.09	17.22423965	7.480841043	17.23853715	. 1224093496
11.10	17.23614416	7.489241223	17.24823073	. 1223255462
11.11	17.24804707	7.497642526	17.25792172	. 1222418714
11.12	17.25994840	7.506044951	17.26761012	1221583248
11.13	17.27184814	7.514448495	17.27729594	. 1220749061
11.14	17.28374629	7.522853158	17.28697919	. 1219916150
11.15	17.29564287	7.531258938	17.29665987	. 1219084512
11.16	17.30753787	7.539665833	17.30633798	. 1218254144
11.17	17.31943129	7.548073842	17.31601352	. 1217425043
11.18	17.33132314	7.556482963	17.32568650	. 1216597206
11.19	17.34321342	7.564893194	17.33535691	. 1215770630
11.20	17.35510213	7.573304535	17.34502478	. 1214945312
11.21	17.36698928	7.581716982	17.35469009	. 1214121249
11.22	17.37887486	7.590130536	17.36435285	. 1213298438
11.23	17.39075889	7.598545193	17.37401307	. 1212476876
11.24	17.40264136	7.606960954	17.38367075	. 1211656560
11.25	17.41452227	7.615377815	17.39332589	. 1210837487
11.26	17.42640163	7.623795776	17.40297849	. 1210019654
11.27	17.43827944	7.632214836	17.41262856	. 1209203058
11.28	17.45015571	7.640634991	17.42227611	. 1208387696
11.29	17.46203043	7.649056242	17.43192113	. 1207573566
11.30	17.47390361	7.657478586	17.44156362	. 1206760664
11.31	17.48577525	7.665902022	17.45120360	. 1205948988
11.32	17.49764535	7.674326549	17.46084107	. 1205138534
11.33	17.50951392	7.682752164	17.47047602	. 1204329301
11.34	17.52138096	7.691178867	17.48010846	. 1203521284
11.35	17.53324647	7.699606655	17.48973840	. 1202714481
11.36	17.54511045	7.708035528	17.49936584	. 1201908889
11.37	17.55697291	7.716465484	17.50899078	. 1201104505
11.38	17.56883384	7.724896520	17.51861323	. 1200301327
11.39	17.58069326	7.733328637	17.52823318	. 1199499352
11.40	17.59255116	7.741761832	17.53785065	. 1198698577
11.41	17.60440755	7.750196104	17.54746563	. 1197898998
11.42	17.61626243	7.758631451	17.55707813	. 1197100614
11.43	17.62811580	7.767067872	17.56668815	. 1196303421
11.44	17.63996766	7.775505365	17.57629569	. 1195507417
11.45	17.65181802	7.783943929	17.58590077	. 1194712599
11.46	17.66366687	7.792383562	17.59550337	. 1193918964
11.47	17.67551423	7.800824264	17.60510351	. 1193126509
11.48	17.68736009	7.809266031	17.61470119	. 1192335232
11.49	17.69920446	7.817708864	17.62429641	. 1191545130
11.50	17.71104733	7.826152760	17.63388917	. 1190756200
11.51	17.72288872	7.834597718	17.64347948	. 1189968440
11.52	17.73472861	7.843043736	17.65306734	. 1189181846
11.53	17.74656703	7.851490814	17.66265275	. 1188396416
11.54	17.75840396	7.859938949	17.67223572	. 1187612148
11.55	17.77023941	7.868388140	17.68181625	. 1186829038
11.56	17.78207339	7.876838386	17.69139435	. 1186047084
11.57	17.79390589	7.885289686	17.70097001	. 1185266284
11.58	17.80573691	7.893742037	17.71054324	. 1184486634
11.59	17.81756647	7.902195438	17.72011404	. 1183708132
11.60	17.82939456	7.910649888	17.72968242	. 1182930776
11.61	17.84122119	7.919105386	17.73924838	. 1182154562
11.62	17.85304635	7.927561930	17.74881192	. 1181379489
11.63	17.86487005	7.936019518	17.75837304	. 1180605552
11.64	17.87669229	7.944478150	17.76793176	. 1179832751


11.65	17.88851308	7.952937823	17.77748806	1179061082
11.66	17.90033242	7.961398537	17.78704196	. 1178290543
11.67	17.91215030	7.969860290	17.79659346	1177521131
11.68	17.92396673	7.978323080	17.80614256	. 1176752843
11.69	17.93578172	7.986786906	17.81568926	. 1175985677
11.70	17.94759526	7.995251767	17.82523357	. 1175219631
11.71	17.95940736	8.003717661	17.83477549	. 1174454701
11.72	17.97121803	8.012184587	17.84431503	1173690886
11.73	17.98302725	8.020652544	17.85385217	. 1172928182
11.74	17.99483504	8.029121529	17.86338694	. 1172166588
11.75	18.00664140	8.037591543	17.87291933	. 1171406100
11.76	18.01844632	8.046062582	17.88244935	. 1170646716
11.77	18.03024982	8.054534647	17.89197699	. 1169888434
11.78	18.04205189	8.063007734	17.90150227	. 1169131252
11.79	18.05385254	8.071481844	17.91102518	. 1168375166
11.80	18.06565177	8.079956975	17.92054572	. 1167620174
11.81	18.07744958	8.088433125	17.93006391	. 1166866274
11.82	18.08924597	8.096910293	17.93957974	. 1166113463
11.83	18.10104095	8.105388478	17.94909322	. 1165361739
11.84	18.11283452	8.113867678	17.95860434	. 1164611099
11.85	18.12462667	8.122347892	17.96811312	. 1163861541
11.86	18.13641742	8.130829118	17.97761956	. 1163113062
11.87	18.14820676	8.139311356	17.98712365	. 1162365661
11.88	18.15999470	8.147794603	17.99662540	. 1161619334
11.89	18.17178124	8.156278859	18.00612482	. 1160874079
11.90	18.18356638	8.164764121	18.01562190	. 1160129894
11.91	18.19535012	8.173250390	18.02511666	. 1159386777
11.92	18.20713247	8.181737663	18.03460909	. 1158644724
11.93	18.21891342	8.190225939	18.04409919	. 1157903734
11.94	18.23069299	8.198715216	18.05358697	. 1157163804
11.95	18.24247117	8.207205494	18.06307244	. 1156424933
11.96	18.25424796	8.215696771	18.07255558	. 1155687116
11.97	18.26602337	8.224189046	18.08203642	. 1154950353
11.98	18.27779739	8.232682317	18.09151495	. 1154214640
11.99	18.28957004	8.241176583	18.10099117	. 1153479976
12.00	18.30134131	8.249671842	18.11046508	. 1152746358
12.01	18.31311121	8.258168094	18.11993670	. 1152013783
12.02	18.32487973	8.266665337	18.12940601	. 1151282251
12.03	18.33664688	8.275163570	18.13887303	. 1150551757
12.04	18.34841267	8.283662791	18.14833776	. 1149822300
12.05	18.36017708	8.292162999	18.15780020	. 1149093877
12.06	18.37194014	8.300664193	18.16726036	. 1148366487
12.07	18.38370183	8.309166372	18.17671823	. 1147640127
12.08	18.39546216	8.317669534	18.18617381	. 1146914794
12.09	18.40722113	8.326173677	18.19562712	. 1146190487
12.10	18.41897875	8.334678801	18.20507816	. 1145467203
12.11	18.43073502	8.343184905	18.21452692	. 1144744939
12.12	18.44248993	8.351691986	18.22397341	. 1144023695
12.13	18.45424349	8.360200044	18.23341764	. 1143303466
12.14	18.46599571	8.368709078	18.24285960	. 1142584252
12.15	18.47774658	8.377219085	18.25229930	. 1141866050
12.16	18.48949611	8.385730066	18.26173674	. 1141148857
12.17	18.50124429	8.394242018	18.27117193	. 1140432672
12.18	18.51299114	8.402754940	18.28060486	. 1139717492
12.19	18.52473665	8.411268831	18.29003554	. 1139003315
12.20	18.53648083	8.419783690	18.29946398	. 1138290138
12.21	18.54822367	8.428299515	18.30889017	. 1137577961
12.22	18.55996518	8.436816306	18.31831412	. 1136866780
12.23	18.57170537	8.445334060	18.32773583	. 1136156593
12.24	18.58344422	8.453852777	18.33715530	. 1135447398
12.25	18.59518176	8.462372456	18.34657254	. 1134739193
12.26	18.60691797	8.470893094	18.35598755	. 1134031976


12.27	18.61865285	8.479414692	18.36540033	1133325745
12.28	18.63038642	8.487937247	18.37481088	1132620497
12.29	18.64211868	8.496460758	18.38421921	1131916230
12.30	18.65384962	8.504985225	18.39362532	1131212943
12.31	18.66557924	8.513510645	18.40302922	1130510632
12.32	18.67730756	8.522037018	18.41243089	1129809297
12.33	18.68903457	8.530564342	18.42183036	1129108934
12.34	18.70076027	8.539092617	18.43122762	1128409542
12.35	18.71248467	8.547621840	18.44062267	1127711119
12.36	18.72420776	8.556152011	18.45001552	1127013662
12.37	18.73592956	8.564683128	18.45940616	1126317170
12.38	18.74765005	8.573215191	18.46879461	1125621639
12.39	18.75936925	8.581748198	18.47818086	1124927070
12.40	18.77108715	8.590282147	18.48756492	1124233458
12.41	18.78280377	8.598817038	18.49694678	. 1123540803
12.42	18.79451909	8.607352869	18.50632646	1122849101
12.43	18.80623312	8.615889640	18.51570395	1122158352
12.44	18.81794586	8.624427348	18.52507926	1121468552
12.45	18.82965732	8.632965993	18.53445239	1120779701
12.46	18.84136750	8.641505573	18.54382334	1120091795
12.47	18.85307640	8.650046087	18.55319212	1119404833
12.48	18.86478401	8.658587535	18.56255873	1118718813
12.49	18.87649035	8.667129914	18.57192316	1118033733
12.50	18.88819542	8.675673224	18.58128543	1117349591
12.51	18.89989921	8.684217464	18.59064553	1116666384
12.52	18.91160173	8.692762632	18.60000347	1115984111
12.53	18.92330298	8.701308726	18.60935925	1115302770
12.54	18.93500297	8.709855747	18.61871288	. 1114622359
12.55	18.94670168	8.718403692	18.62806435	1113942876
12.56	18.95839914	8.726952561	18.63741367	1113264318
12.57	18.97009533	8.735502352	18.64676084	1112586685
12.58	18.98179026	8.744053064	18.65610586	1111909973
12.59	18.99348394	8.752604696	18.66544874	1111234181
12.60	19.00517636	8.761157247	18.67478948	. 1110559307
12.61	19.01686752	8.769710715	18.68412807	. 1109885350
12.62	19.02855743	8.778265100	18.69346454	1109212306
12.63	19.04024609	8.786820400	18.70279886	1108540175
12.64	19.05193350	8.795376614	18.71213106	1107868953
12.65	19.06361967	8.803933741	18.72146113	1107198640
12.66	19.07530459	8.812491780	18.73078907	. 1106529234
12.67	19.08698827	8.821050729	18.74011489	1105860732
12.68	19.09867070	8.829610588	18.74943858	. 1105193132
12.69	19.11035190	8.838171355	18.75876016	1104526433
12.70	19.12203186	8.846733029	18.76807962	1103860633
12.71	19.13371058	8.855295609	18.77739697	. 1103195730
12.72	19.14538807	8.863859094	18.78671220	. 1102531722
12.73	19.15706433	8.872423482	18.79602533	1101868607
12.74	19.16873935	8.880988773	18.80533635	. 1101206383
12.75	19.18041315	8.889554965	18.81464526	1100545048
12.76	19.19208572	8.898122058	18.82395208	1099884601
12.77	19.20375707	8.906690049	18.83325679	. 1099225039
12.78	19.21542719	8.915258939	18.84255941	1098566361
12.79	19.22709610	8.923828725	18.85185994	1097908566
12.80	19.23876378	8.932399407	18.86115837	1097251650
12.81	19.25043024	8.940970984	18.87045471	1096595612
12.82	19.26209549	8.949543453	18.87974897	1095940451
12.83	19.27375953	8.958116816	18.88904114	1095286164
12.84	19.28542235	8.966691069	18.89833123	1094632750
12.85	19.29708397	8.975266212	18.90761925	1093980207
12.86	19.30874437	8.983842244	18.91690518	1093328534
12.87	19.32040357	8.992419165	18.92618904	1092677727
12.88	19.33206156	9.000996971	18.93547082	. 1092027786


12.89	19.34371835	9.009575664	18.94475054	1091378708
12.90	19.35537393	9.018155240	18.95402819	. 1090730493
12.91	19.36702832	9.026735700	18.96330377	1090083138
12.92	19.37868151	9.035317043	18.97257729	. 1089436640
12.93	19.39033350	9.043899266	18.98184876	. 1088791000
12.94	19.40198430	9.052482369	18.99111816	. 1088146214
12.95	19.41363390	9.061066352	19.00038551	. 1087502281
12.96	19.42528232	9.069651212	19.00965080	. 1086859200
12.97	19.43692954	9.078236949	19.01891404	. 1086216968
12.98	19.44857558	9.086823561	19.02817524	. 1085575584
12.99	19.46022043	9.095411048	19.03743438	. 1084935045
13.00	19.47186409	9.103999409	19.04669149	. 1084295351
13.01	19.48350658	9.112588642	19.05594655	. 1083656500
13.02	19.49514788	9.121178746	19.06519957	. 1083018489
13.03	19.50678800	9.129769720	19.07445056	. 1082381317
13.04	19.51842695	9.138361564	19.08369951	. 1081744983
13.05	19.53006472	9.146954275	19.09294643	. 1081109484
13.06	19.54170131	9.155547854	19.10219132	. 1080474819
13.07	19.55333674	9.164142298	19.11143419	. 1079840986
13.08	19.56497099	9.172737607	19.12067502	. 1079207983
13.09	19.57660407	9.181333780	19.12991384	. 1078575810
13.10	19.58823599	9.189930815	19.13915063	. 1077944463
13.11	19.59986674	9.198528712	19.14838541	. 1077313942
13.12	19.61149633	9.207127470	19.15761817	. 1076684245
13.13	19.62312475	9.215727086	19.16684891	. 1076055369
13.14	19.63475202	9.224327562	19.17607765	. 1075427314
13.15	19.64637812	9.232928894	19.18530437	. 1074800078
13.16	19.65800307	9.241531083	19.19452909	. 1074173658
13.17	19.66962686	9.250134127	19.20375180	. 1073548054
13.18	19.68124950	9.258738026	19.21297252	. 1072923264
13.19	19.69287099	9.267342777	19.22219123	. 1072299285
13.20	19.70449132	9.275948381	19.23140794	. 1071676117
13.21	19.71611051	9.284554835	19.24062266	. 1071053758
13.22	19.72772855	9.293162139	19.24983538	. 1070432206
13.23	19.73934544	9.301770293	19.25904612	. 1069811459
13.24	19.75096119	9.310379294	19.26825486	. 1069191516
13.25	19.76257580	9.318989142	19.27746162	. 1068572375
13.26	19.77418927	9.327599835	19.28666639	. 1067954035
13.27	19.78580159	9.336211374	19.29586918	. 1067336494
13.28	19.79741278	9.344823756	19.30506999	. 1066719750
13.29	19.80902284	9.353436981	19.31426883	. 1066103802
13.30	19.82063176	9.362051048	19.32346569	. 1065488648
13.31	19.83223954	9.370665955	19.33266057	. 1064874286
13.32	19.84384620	9.379281701	19.34185349	. 1064260716
13.33	19.85545172	9.387898287	19.35104443	. 1063647934
13.34	19.86705612	9.396515710	19.36023341	. 1063035941
13.35	19.87865939	9.405133969	19.36942042	. 1062424734
13.36	19.89026154	9.413753064	19.37860548	. 1061814311
13.37	19.90186256	9.422372993	19.38778857	. 1061204671
13.38	19.91346246	9.430993756	19.39696970	. 1060595813
13.39	19.92506124	9.439615351	19.40614888	. 1059987735
13.40	19.93665891	9.448237778	19.41532610	. 1059380435
13.41	19.94825545	9.456861035	19.42450138	. 1058773912
13.42	19.95985088	9.465485122	19.43367470	. 1058168164
13.43	19.97144520	9.474110037	19.44284608	. 1057563189
13.44	19.98303841	9.482735779	19.45201551	. 1056958987
13.45	19.99463050	9.491362348	19.46118300	. 1056355556
13.46	20.00622149	9.499989742	19.47034855	. 1055752893
13.47	20.01781136	9.508617960	19.47951216	. 1055150998
13.48	20.02940014	9.517247002	19.48867383	. 1054549869
13.49	20.04098780	9.525876867	19.49783357	. 1053949505
13.50	20.05257437	9.534507553	19.50699138	. 1053349903


13.51	20.06415983	9.543139059	19.51614726	. 1052751063
13.52	20.07574420	9.551771384	19.52530121	. 1052152983
13.53	20.08732746	9.560404528	19.53445323	. 1051555661
13.54	20.09890963	9.569038490	19.54360333	. 1050959096
13.55	20.11049070	9.577673268	19.55275151	1050363287
13.56	20.12207068	9.586308861	19.56189777	. 1049768231
13.57	20.13364957	9.594945269	19.57104212	. 1049173928
13.58	20.14522737	9.603582491	19.58018454	. 1048580376
13.59	20.15680408	9.612220525	19.58932506	. 1047987574
13.60	20.16837970	9.620859370	19.59846366	1047395519
13.61	20.17995423	9.629499027	19.60760036	. 1046804211
13.62	20.19152768	9.638139492	19.61673515	. 1046213648
13.63	20.20310005	9.646780767	19.62586803	. 1045623828
13.64	20.21467134	9.655422849	19.63499901	. 1045034751
13.65	20.22624154	9.664065738	19.64412809	. 1044446414
13.66	20.23781067	9.672709433	19.65325527	. 1043858817
13.67	20.24937872	9.681353932	19.66238056	. 1043271957
13.68	20.26094569	9.689999235	19.67150395	. 1042685834
13.69	20.27251159	9.698645341	19.68062545	. 1042100445
13.70	20.28407642	9.707292249	19.68974506	. 1041515790
13.71	20.29564018	9.715939958	19.69886278	. 1040931867
13.72	20.30720286	9.724588467	19.70797861	. 1040348674
13.73	20.31876448	9.733237775	19.71709256	. 1039766211
13.74	20.33032503	9.741887881	19.72620463	. 1039184475
13.75	20.34188452	9.750538784	19.73531482	. 1038603466
13.76	20.35344294	9.759190484	19.74442313	. 1038023181
13.77	20.36500030	9.767842978	19.75352957	. 1037443620
13.78	20.37655660	9.776496267	19.76263413	. 1036864781
13.79	20.38811184	9.785150349	19.77173682	. 1036286663
13.80	20.39966603	9.793805224	19.78083764	. 1035709264
13.81	20.41121915	9.802460890	19.78993659	. 1035132582
13.82	20.42277122	9.811117347	19.79903367	. 1034556617
13.83	20.43432224	9.819774593	19.80812890	. 1033981368
13.84	20.44587220	9.828432628	19.81722226	. 1033406831
13.85	20.45742112	9.837091451	19.82631376	. 1032833008
13.86	20.46896898	9.845751060	19.83540340	. 1032259895
13.87	20.48051580	9.854411455	19.84449118	. 1031687491
13.88	20.49206157	9.863072636	19.85357712	. 1031115796
13.89	20.50360630	9.871734600	19.86266120	. 1030544808
13.90	20.51514998	9.880397347	19.87174343	. 1029974525
13.91	20.52669262	9.889060877	19.88082381	. 1029404946
13.92	20.53823422	9.897725188	19.88990235	. 1028836070
13.93	20.54977478	9.906390279	19.89897904	. 1028267895
13.94	20.56131430	9.915056149	19.90805389	. 1027700420
13.95	20.57285278	9.923722798	19.91712690	. 1027133644
13.96	20.58439023	9.932390225	19.92619808	. 1026567565
13.97	20.59592665	9.941058428	19.93526741	. 1026002182
13.98	20.60746203	9.949727407	19.94433492	. 1025437494
13.99	20.61899639	9.958397161	19.95340059	. 1024873499
14.00	20.63052971	9.967067688	19.96246443	. 1024310196
14.01	20.64206201	9.975738989	19.97152644	. 1023747584
14.02	20.65359327	9.984411062	19.98058662	. 1023185661
14.03	20.66512352	9.993083906	19.98964498	. 1022624426
14.04	20.67665274	10.00175752	19.99870152	. 1022063878
14.05	20.68818093	10.01043190	20.00775624	. 1021504015
14.06	20.69970811	10.01910706	20.01680914	. 1020944836
14.07	20.71123426	10.02778298	20.02586022	. 1020386340
14.08	20.72275940	10.03645966	20.03490949	. 1019828526
14.09	20.73428352	10.04513712	20.04395694	. 1019271391
14.10	20.74580662	10.05381533	20.05300259	. 1018714936
14.11	20.75732871	10.06249431	20.06204642	. 1018159158
14.12	20.76884979	10.07117406	20.07108845	. 1017604056


14.13	20.78036985	10.07985457	20.08012867	. 1017049630
14.14	20.79188891	10.08853583	20.08916709	. 1016495877
14.15	20.80340695	10.09721786	20.09820371	. 1015942797
14.16	20.81492399	10.10590065	20.10723852	. 1015390387
14.17	20.82644002	10.11458420	20.11627154	. 1014838648
14.18	20.83795505	10.12326850	20.12530277	. 1014287577
14.19	20.84946907	10.13195356	20.13433220	. 1013737174
14.20	20.86098209	10.14063938	20.14335983	. 1013187437
14.21	20.87249411	10.14932596	20.15238568	. 1012638364
14.22	20.88400513	10.15801328	20.16140974	. 1012089956
14.23	20.89551515	10.16670136	20.17043201	. 1011542209
14.24	20.90702418	10.17539020	20.17945250	. 1010995124
14.25	20.91853221	10.18407978	20.18847121	. 1010448698
14.26	20.93003924	10.19277012	20.19748813	. 1009902932
14.27	20.94154528	10.20146120	20.20650328	. 1009357822
14.28	20.95305033	10.21015304	20.21551664	. 1008813369
14.29	20.96455439	10.21884562	20.22452824	. 1008269570
14.30	20.97605746	10.22753895	20.23353806	. 1007726425
14.31	20.98755955	10.23623303	20.24254610	. 1007183933
14.32	20.99906064	10.24492785	20.25155238	. 1006642092
14.33	21.01056076	10.25362342	20.26055689	. 1006100900
14.34	21.02205988	10.26231973	20.26955963	. 1005560358
14.35	21.03355803	10.27101679	20.27856061	. 1005020463
14.36	21.04505519	10.27971459	20.28755983	. 1004481215
14.37	21.05655138	10.28841313	20.29655728	. 1003942611
14.38	21.06804658	10.29711241	20.30555298	. 1003404652
14.39	21.07954081	10.30581242	20.31454692	. 1002867335
14.40	21.09103406	10.31451318	20.32353910	. 1002330660
14.41	21.10252634	10.32321468	20.33252953	. 1001794625
14.42	21.11401764	10.33191691	20.34151821	. 1001259229
14.43	21.12550797	10.34061988	20.35050514	. 1000724472
14.44	21.13699733	10.34932358	20.35949032	. 1000190351
14.45	21.14848572	10.35802802	20.36847376	9.9965686531E-02
14.46	21.15997314	10.36673320	20.37745545	9.9912401432E-02
14.47	21.17145960	10.37543910	20.38643540	9.9859179657E-02
14.48	21.18294509	10.38414574	20.39541360	9.9806021086E-02
14.49	21.19442961	10.39285311	20.40439007	9.9752925603E-02
14.50	21.20591317	10.40156121	20.41336480	9.9699893091E-02
14.51	21.21739577	10.41027004	20.42233780	9.9646923434E-02
14.52	21.22887741	10.41897960	20.43130906	9.9594016514E-02
14.53	21.24035809	10.42768989	20.44027859	9.9541172217E-02
14.54	21.25183781	10.43640090	20.44924638	9.9488390425E-02
14.55	21.26331657	10.44511264	20.45821245	9.9435671025E-02
14.56	21.27479438	10.45382511	20.46717680	9.9383013900E-02
14.57	21.28627123	10.46253830	20.47613942	9.9330418936E-02
14.58	21.29774713	10.47125221	20.48510031	9.9277886018E-02
14.59	21.30922208	10.47996685	20.49405949	9.9225415033E-02
14.60	21.32069607	10.48868221	20.50301694	9.9173005865E-02
14.61	21.33216912	10.49739829	20.51197267	9.9120658401E-02
14.62	21.34364122	10.50611509	20.52092669	9.9068372529E-02
14.63	21.35511237	10.51483261	20.52987900	9.9016148134E-02
14.64	21.36658257	10.52355085	20.53882959	9.8963985104E-02
14.65	21.37805183	10.53226981	20.54777847	9.8911883326E-02
14.66	21.38952015	10.54098949	20.55672565	9.8859842688E-02
14.67	21.40098752	10.54970988	20.56567111	9.8807863078E-02
14.68	21.41245396	10.55843099	20.57461487	$9.8755944384 \mathrm{E}-02$
14.69	21.42391945	10.56715281	20.58355692	9.8704086496E-02
14.70	21.43538400	10.57587535	20.59249727	9.8652289300E-02
14.71	21.44684762	10.58459860	20.60143593	9.8600552688E-02
14.72	21.45831030	10.59332256	20.61037288	$9.8548876547 \mathrm{E}-02$
14.73	21.46977205	10.60204723	20.61930813	9.8497260768E-02
14.74	21.48123286	10.61077262	20.62824169	9.8445705241E-02


14.75	21.49269274	10.61949872	20.63717356	9.8394209856E-02
14.76	21.50415169	10.62822552	20.64610373	9.8342774503E-02
14.77	21.51560970	10.63695303	20.65503221	9.8291399073E-02
14.78	21.52706679	10.64568126	20.66395901	9.8240083457E-02
14.79	21.53852295	10.65441018	20.67288412	9.8188827547E-02
14.80	21.54997819	10.66313982	20.68180754	9.8137631233E-02
14.81	21.56143249	10.67187016	20.69072927	9.8086494408E-02
14.82	21.57288588	10.68060120	20.69964933	9.8035416964E-02
14.83	21.58433834	10.68933295	20.70856771	9.7984398793E-02
14.84	21.59578988	10.69806540	20.71748440	9.7933439788E-02
14.85	21.60724049	10.70679855	20.72639942	$9.7882539841 \mathrm{E}-02$
14.86	21.61869019	10.71553241	20.73531277	$9.7831698847 \mathrm{E}-02$
14.87	21.63013897	10.72426696	20.74422444	9.7780916697E-02
14.88	21.64158684	10.73300222	20.75313444	9.7730193287E-02
14.89	21.65303378	10.74173817	20.76204277	9.7679528509E-02
14.90	21.66447981	10.75047483	20.77094943	9.7628922258E-02
14.91	21.67592493	10.75921218	20.77985442	9.7578374429E-02
14.92	21.68736914	10.76795022	20.78875775	9.7527884916E-02
14.93	21.69881243	10.77668896	20.79765941	$9.7477453614 \mathrm{E}-02$
14.94	21.71025481	10.78542840	20.80655941	9.7427080419E-02
14.95	21.72169629	10.79416854	20.81545775	9.7376765225E-02
14.96	21.73313685	10.80290936	20.82435443	9.7326507929E-02
14.97	21.74457651	10.81165088	20.83324946	9.7276308427E-02
14.98	21.75601527	10.82039309	20.84214283	9.7226166615E-02
14.99	21.76745312	10.82913599	20.85103455	9.7176082389E-02
15.00	21.77889006	10.83787959	20.85992461	9.7126055646E-02
15.01	21.79032610	10.84662387	20.86881302	9.7076086284E-02
15.02	21.80176125	10.85536884	20.87769979	9.7026174198E-02
15.03	21.81319549	10.86411450	20.88658490	9.6976319288E-02
15.04	21.82462883	10.87286085	20.89546837	9.6926521451E-02
15.05	21.83606128	10.88160789	20.90435020	9.6876780584E-02
15.06	21.84749283	10.89035561	20.91323039	9.6827096586E-02
15.07	21.85892348	10.89910401	20.92210893	9.6777469356E-02
15.08	21.87035324	10.90785310	20.93098583	9.6727898792E-02
15.09	21.88178211	10.91660288	20.93986110	9.6678384793E-02
15.10	21.89321008	10.92535333	20.94873473	9.6628927259E-02
15.11	21.90463716	10.93410447	20.95760673	9.6579526089E-02
15.12	21.91606336	10.94285630	20.96647709	9.6530181182E-02
15.13	21.92748866	10.95160880	20.97534582	9.6480892439E-02
15.14	21.93891308	10.96036198	20.98421292	9.6431659760E-02
15.15	21.95033661	10.96911584	20.99307840	9.6382483046E-02
15.16	21.96175925	10.97787038	21.00194225	9.6333362196E-02
15.17	21.97318101	10.98662560	21.01080447	9.6284297113E-02
15.18	21.98460189	10.99538149	21.01966507	9.6235287696E-02
15.19	21.99602189	11.00413806	21.02852405	9.6186333849E-02
15.20	22.00744100	11.01289531	21.03738140	9.6137435471E-02
15.21	22.01885924	11.02165323	21.04623714	9.6088592466E-02
15.22	22.03027659	11.03041183	21.05509127	9.6039804735E-02
15.23	22.04169307	11.03917110	21.06394377	9.5991072181E-02
15.24	22.05310867	11.04793104	21.07279466	9.5942394706E-02
15.25	22.06452340	11.05669165	21.08164395	9.5893772213E-02
15.26	22.07593725	11.06545294	21.09049162	9.5845204605E-02
15.27	22.08735023	11.07421489	21.09933768	9.5796691786E-02
15.28	22.09876233	11.08297751	21.10818213	9.5748233659E-02
15.29	22.11017357	11.09174081	21.11702498	9.5699830127E-02
15.30	22.12158393	11.10050477	21.12586622	9.5651481095E-02
15.31	22.13299343	11.10926940	21.13470586	9.5603186468E-02
15.32	22.14440206	11.11803470	21.14354390	9.5554946148E-02
15.33	22.15580982	11.12680066	21.15238033	9.5506760042E-02
15.34	22.16721671	11.13556729	21.16121517	9.5458628054E-02
15.35	22.17862274	11.14433458	21.17004842	9.5410550089E-02
15.36	22.19002791	11.15310253	21.17888006	9.5362526052E-02


15.37	22.20143221	11.16187115	21.18771012	9.5314555849E-02
15.38	22.21283566	11.17064043	21.19653858	9.5266639387E-02
15.39	22.22423824	11.17941038	21.20536545	9.5218776570E-02
15.40	22.23563996	11.18818098	21.21419073	9.5170967306E-02
15.41	22.24704082	11.19695225	21.22301443	9.5123211500E-02
15.42	22.25844083	11.20572417	21.23183653	9.5075509060E-02
15.43	22.26983998	11.21449675	21.24065706	9.5027859892E-02
15.44	22.28123828	11.22327000	21.24947600	9.4980263903E-02
15.45	22.29263572	11.23204389	21.25829336	9.4932721001E-02
15.46	22.30403231	11.24081845	21.26710914	9.4885231094E-02
15.47	22.31542804	11.24959366	21.27592334	9.4837794089E-02
15.48	22.32682293	11.25836953	21.28473596	9.4790409895E-02
15.49	22.33821697	11.26714605	21.29354701	9.4743078418E-02
15.50	22.34961015	11.27592323	21.30235648	9.4695799569E-02
15.51	22.36100249	11.28470106	21.31116439	9.4648573256E-02
15.52	22.37239398	11.29347954	21.31997072	9.4601399387E-02
15.53	22.38378463	11.30225867	21.32877548	9.4554277871E-02
15.54	22.39517443	11.31103845	21.33757867	9.4507208619E-02
15.55	22.40656339	11.31981889	21.34638030	9.4460191539E-02
15.56	22.41795150	11.32859997	21.35518036	9.4413226542E-02
15.57	22.42933878	11.33738171	21.36397886	9.4366313536E-02
15.58	22.44072521	11.34616409	21.37277579	9.4319452433E-02
15.59	22.45211080	11.35494712	21.38157117	9.4272643143E-02
15.60	22.46349556	11.36373079	21.39036498	9.4225885576E-02
15.61	22.47487948	11.37251512	21.39915724	9.4179179644E-02
15.62	22.48626256	11.38130009	21.40794794	9.4132525257E-02
15.63	22.49764480	11.39008570	21.41673709	9.4085922326E-02
15.64	22.50902621	11.39887196	21.42552468	9.4039370763E-02
15.65	22.52040679	11.40765886	21.43431073	9.3992870479E-02
15.66	22.53178653	11.41644640	21.44309522	9.3946421387E-02
15.67	22.54316544	11.42523459	21.45187816	9.3900023398E-02
15.68	22.55454353	11.43402341	21.46065956	9.3853676425E-02
15.69	22.56592078	11.44281288	21.46943941	9.3807380380E-02
15.70	22.57729720	11.45160299	21.47821771	9.3761135176E-02
15.71	22.58867280	11.46039374	21.48699448	9.3714940726E-02
15.72	22.60004757	11.46918512	21.49576970	9.3668796942E-02
15.73	22.61142152	11.47797715	21.50454338	9.3622703738E-02
15.74	22.62279464	11.48676981	21.51331552	9.3576661028E-02
15.75	22.63416693	11.49556311	21.52208613	9.3530668725E-02
15.76	22.64553841	11.50435704	21.53085520	9.3484726743E-02
15.77	22.65690906	11.51315161	21.53962273	9.3438834997E-02
15.78	22.66827890	11.52194681	21.54838873	9.3392993399E-02
15.79	22.67964791	11.53074265	21.55715320	9.3347201866E-02
15.80	22.69101610	11.53953912	21.56591614	9.3301460311E-02
15.81	22.70238348	11.54833623	21.57467755	9.3255768650E-02
15.82	22.71375004	11.55713396	21.58343744	9.3210126798E-02
15.83	22.72511578	11.56593233	21.59219580	9.3164534669E-02
15.84	22.73648072	11.57473133	21.60095263	9.3118992179E-02
15.85	22.74784483	11.58353096	21.60970794	9.3073499245E-02
15.86	22.75920814	11.59233122	21.61846173	9.3028055781E-02
15.87	22.77057063	11.60113210	21.62721400	9.2982661704E-02
15.88	22.78193231	11.60993362	21.63596475	9.2937316931E-02
15.89	22.79329318	11.61873576	21.64471399	9.2892021376E-02
15.90	22.80465324	11.62753853	21.65346171	9.2846774959E-02
15.91	22.81601250	11.63634192	21.66220791	9.2801577594E-02
15.92	22.82737095	11.64514594	21.67095260	9.2756429199E-02
15.93	22.83872859	11.65395058	21.67969578	9.2711329691E-02
15.94	22.85008543	11.66275585	21.68843745	9.2666278989E-02
15.95	22.86144146	11.67156174	21.69717761	9.2621277008E-02
15.96	22.87279669	11.68036826	21.70591626	9.2576323667E-02
15.97	22.88415112	11.68917539	21.71465340	9.2531418885E-02
15.98	22.89550475	11.69798315	21.72338905	9.2486562578E-02


15.99	22.90685757	11.70679153	21.73212318	9.2441754666E-02
16.00	22.91820960	11.71560053	21.74085582	9.2396995068E-02
16.01	22.92956083	11.72441015	21.74958696	9.2352283701E-02
16.02	22.94091126	11.73322038	21.75831659	9.2307620484E-02
16.03	22.95226090	11.74203124	21.76704473	9.2263005337E-02
16.04	22.96360974	11.75084271	21.77577137	9.2218438180E-02
16.05	22.97495779	11.75965480	21.78449652	9.2173918931E-02
16.06	22.98630504	11.76846751	21.79322017	9.2129447510E-02
16.07	22.99765150	11.77728083	21.80194233	9.2085023837E-02
16.08	23.00899717	11.78609477	21.81066300	9.2040647831E-02
16.09	23.02034205	11.79490932	21.81938219	9.1996319414E-02
16.10	23.03168613	11.80372448	21.82809988	9.1952038506E-02
16.11	23.04302943	11.81254026	21.83681608	9.1907805027E-02
16.12	23.05437194	11.82135665	21.84553080	9.1863618897E-02
16.13	23.06571367	11.83017365	21.85424404	9.1819480039E-02
16.14	23.07705461	11.83899126	21.86295579	9.1775388372E-02
16.15	23.08839476	11.84780949	21.87166607	$9.1731343818 \mathrm{E}-02$
16.16	23.09973413	11.85662832	21.88037486	9.1687346299E-02
16.17	23.11107271	11.86544776	21.88908217	9.1643395736E-02
16.18	23.12241052	11.87426781	21.89778801	9.1599492051E-02
16.19	23.13374754	11.88308847	21.90649237	9.1555635166E-02
16.20	23.14508378	11.89190974	21.91519525	9.1511825003E-02
16.21	23.15641924	11.90073161	21.92389666	9.1468061485E-02
16.22	23.16775392	11.90955409	21.93259660	9.1424344533E-02
16.23	23.17908783	11.91837717	21.94129507	9.1380674072E-02
16.24	23.19042096	11.92720086	21.94999207	9.1337050023E-02
16.25	23.20175331	11.93602516	21.95868761	9.1293472310E-02
16.26	23.21308489	11.94485005	21.96738167	9.1249940855E-02
16.27	23.22441569	11.95367555	21.97607427	9.1206455583E-02
16.28	23.23574572	11.96250165	21.98476541	9.1163016417E-02
16.29	23.24707498	11.97132836	21.99345508	9.1119623280E-02
16.30	23.25840346	11.98015566	22.00214329	9.1076276096E-02
16.31	23.26973118	11.98898357	22.01083005	9.1032974790E-02
16.32	23.28105812	11.99781207	22.01951534	9.0989719286E-02
16.33	23.29238430	12.00664118	22.02819918	9.0946509508E-02
16.34	23.30370971	12.01547088	22.03688156	$9.0903345381 \mathrm{E}-02$
16.35	23.31503435	12.02430118	22.04556248	9.0860226829E-02
16.36	23.32635823	12.03313208	22.05424195	$9.0817153778 \mathrm{E}-02$
16.37	23.33768134	12.04196358	22.06291997	9.0774126152E-02
16.38	23.34900368	12.05079567	22.07159654	9.0731143877E-02
16.39	23.36032527	12.05962836	22.08027166	$9.0688206878 \mathrm{E}-02$
16.40	23.37164609	12.06846164	22.08894533	9.0645315081E-02
16.41	23.38296615	12.07729551	22.09761756	9.0602468412E-02
16.42	23.39428544	12.08612999	22.10628834	9.0559666796E-02
16.43	23.40560398	12.09496505	22.11495767	9.0516910160E-02
16.44	23.41692176	12.10380070	22.12362556	9.0474198430E-02
16.45	23.42823878	12.11263695	22.13229201	9.0431531532E-02
16.46	23.43955505	12.12147379	22.14095702	9.0388909392E-02
16.47	23.45087055	12.13031122	22.14962059	9.0346331939E-02
16.48	23.46218531	12.13914924	22.15828272	9.0303799098E-02
16.49	23.47349930	12.14798785	22.16694342	9.0261310796E-02
16.50	23.48481255	12.15682705	22.17560268	9.0218866962E-02
16.51	23.49612504	12.16566683	22.18426050	9.0176467521E-02
16.52	23.50743678	12.17450721	22.19291690	9.0134112403E-02
16.53	23.51874776	12.18334817	22.20157186	$9.0091801534 \mathrm{E}-02$
16.54	23.53005800	12.19218972	22.21022539	$9.0049534842 \mathrm{E}-02$
16.55	23.54136749	12.20103185	22.21887749	9.0007312256E-02
16.56	23.55267623	12.20987457	22.22752817	8.9965133704E-02
16.57	23.56398422	12.21871787	22.23617741	8.9922999113E-02
16.58	23.57529146	12.22756176	22.24482524	8.9880908414E-02
16.59	23.58659796	12.23640623	22.25347164	8.9838861533E-02
16.60	23.59790372	12.24525128	22.26211661	8.9796858400E-02


16.61	23.60920873	12.25409692	22.27076017	8.9754898945E-02
16.62	23.62051299	12.26294314	22.27940231	8.9712983096E-02
16.63	23.63181651	12.27178994	22.28804302	8.9671110782E-02
16.64	23.64311930	12.28063732	22.29668232	8.9629281933E-02
16.65	23.65442134	12.28948528	22.30532020	8.9587496479E-02
16.66	23.66572264	12.29833382	22.31395667	8.9545754349E-02
16.67	23.67702320	12.30718293	22.32259173	8.9504055467E-02
16.68	23.68832302	12.31603263	22.33122537	8.9462399776E-02
16.69	23.69962211	12.32488290	22.33985760	8.9420787199E-02
16.70	23.71092046	12.33373375	22.34848842	8.9379217668E-02
16.71	23.72221807	12.34258518	22.35711783	8.9337691112E-02
16.72	23.73351495	12.35143718	22.36574583	8.9296207462E-02
16.73	23.74481109	12.36028976	22.37437243	8.9254766649E-02
16.74	23.75610650	12.36914292	22.38299762	8.9213368605E-02
16.75	23.76740118	12.37799664	22.39162141	8.9172013259E-02
16.76	23.77869513	12.38685094	22.40024379	8.9130700545E-02
16.77	23.78998834	12.39570582	22.40886478	8.9089430392E-02
16.78	23.80128083	12.40456126	22.41748436	8.9048202733E-02
16.79	23.81257258	12.41341728	22.42610255	8.9007017499E-02
16.80	23.82386361	12.42227387	22.43471933	8.8965874623E-02
16.81	23.83515391	12.43113103	22.44333472	8.8924774035E-02
16.82	23.84644349	12.43998876	22.45194872	8.8883715670E-02
16.83	23.85773233	12.44884706	22.46056132	8.8842699458E-02
16.84	23.86902046	12.45770593	22.46917253	8.8801725332E-02
16.85	23.88030786	12.46656537	22.47778235	8.8760793226E-02
16.86	23.89159453	12.47542537	22.48639077	8.8719903071E-02
16.87	23.90288048	12.48428595	22.49499781	8.8679054801E-02
16.88	23.91416572	12.49314708	22.50360346	8.8638248349E-02
16.89	23.92545023	12.50200879	22.51220772	8.8597483647E-02
16.90	23.93673402	12.51087106	22.52081060	8.8556760630E-02
16.91	23.94801709	12.51973390	22.52941209	8.8516079231E-02
16.92	23.95929944	12.52859730	22.53801220	8.8475439384E-02
16.93	23.97058107	12.53746126	22.54661093	8.8434841022E-02
16.94	23.98186199	12.54632579	22.55520827	8.8394284079E-02
16.95	23.99314219	12.55519088	22.56380424	8.8353768490E-02
16.96	24.00442168	12.56405653	22.57239883	8.8313294188E-02
16.97	24.01570045	12.57292274	22.58099204	8.8272861108E-02
16.98	24.02697851	12.58178952	22.58958387	8.8232469185E-02
16.99	24.03825585	12.59065685	22.59817433	8.8192118353E-02
17.00	24.04953248	12.59952475	22.60676342	8.8151808547E-02
17.01	24.06080841	12.60839320	22.61535113	8.8111539702E-02
17.02	24.07208362	12.61726222	22.62393748	8.8071311753E-02
17.03	24.08335812	12.62613179	22.63252245	8.8031124635E-02
17.04	24.09463191	12.63500192	22.64110605	8.7990978283E-02
17.05	24.10590499	12.64387261	22.64968829	8.7950872634E-02
17.06	24.11717737	12.65274385	22.65826916	8.7910807622E-02
17.07	24.12844904	12.66161565	22.66684867	8.7870783184E-02
17.08	24.13972001	12.67048800	22.67542681	8.7830799256E-02
17.09	24.15099027	12.67936091	22.68400358	8.7790855773E-02
17.10	24.16225982	12.68823438	22.69257900	8.7750952671E-02
17.11	24.17352867	12.69710840	22.70115305	8.7711089887E-02
17.12	24.18479682	12.70598297	22.70972575	8.7671267358E-02
17.13	24.19606427	12.71485809	22.71829709	8.7631485020E-02
17.14	24.20733102	12.72373377	22.72686706	8.7591742810E-02
17.15	24.21859706	12.73261000	22.73543569	8.7552040665E-02
17.16	24.22986241	12.74148678	22.74400296	8.7512378521E-02
17.17	24.24112706	12.75036411	22.75256887	8.7472756316E-02
17.18	24.25239101	12.75924199	22.76113344	8.7433173986E-02
17.19	24.26365426	12.76812042	22.76969665	8.7393631471E-02
17.20	24.27491682	12.77699940	22.77825851	8.7354128706E-02
17.21	24.28617868	12.78587892	22.78681902	8.7314665631E-02
17.22	24.29743984	12.79475900	22.79537818	8.7275242181E-02


17.23	24.30870032	12.80363962	22.80393600	8.7235858297E-02
17.24	24.31996009	12.81252079	22.81249247	8.7196513914E-02
17.25	24.33121918	12.82140251	22.82104760	8.7157208973E-02
17.26	24.34247757	12.83028477	22.82960139	8.7117943411E-02
17.27	24.35373528	12.83916757	22.83815383	8.7078717166E-02
17.28	24.36499229	12.84805093	22.84670493	8.7039530177E-02
17.29	24.37624861	12.85693482	22.85525469	8.7000382383E-02
17.30	24.38750425	12.86581926	22.86380311	8.6961273723E-02
17.31	24.39875920	12.87470424	22.87235020	8.6922204136E-02
17.32	24.41001345	12.88358977	22.88089594	8.6883173561E-02
17.33	24.42126703	12.89247583	22.88944036	8.6844181937E-02
17.34	24.43251992	12.90136244	22.89798343	8.6805229203E-02
17.35	24.44377212	12.91024959	22.90652518	8.6766315299E-02
17.36	24.45502364	12.91913728	22.91506559	8.6727440165E-02
17.37	24.46627447	12.92802551	22.92360468	8.6688603740E-02
17.38	24.47752462	12.93691428	22.93214243	8.6649805965E-02
17.39	24.48877409	12.94580359	22.94067885	8.6611046779E-02
17.40	24.50002288	12.95469343	22.94921395	8.6572326122E-02
17.41	24.51127099	12.96358382	22.95774772	8.6533643935E-02
17.42	24.52251842	12.97247474	22.96628017	8.6495000159E-02
17.43	24.53376517	12.98136620	22.97481129	8.6456394733E-02
17.44	24.54501124	12.99025819	22.98334109	8.6417827598E-02
17.45	24.55625663	12.99915072	22.99186956	8.6379298695E-02
17.46	24.56750135	13.00804379	23.00039672	8.6340807965E-02
17.47	24.57874539	13.01693739	23.00892255	8.6302355349E-02
17.48	24.58998875	13.02583152	23.01744707	8.6263940789E-02
17.49	24.60123145	13.03472619	23.02597027	8.6225564225E-02
17.50	24.61247346	13.04362139	23.03449215	8.6187225598E-02
17.51	24.62371481	13.05251712	23.04301272	8.6148924851E-02
17.52	24.63495548	13.06141339	23.05153197	8.6110661925E-02
17.53	24.64619548	13.07031018	23.06004992	8.6072436761E-02
17.54	24.65743481	13.07920751	23.06856654	8.6034249302E-02
17.55	24.66867347	13.08810537	23.07708186	8.5996099490E-02
17.56	24.67991146	13.09700376	23.08559587	8.5957987266E-02
17.57	24.69114878	13.10590268	23.09410857	8.5919912574E-02
17.58	24.70238543	13.11480212	23.10261996	8.5881875354E-02
17.59	24.71362142	13.12370210	23.11113005	8.5843875551E-02
17.60	24.72485674	13.13260260	23.11963883	8.5805913106E-02
17.61	24.73609139	13.14150363	23.12814631	8.5767987962E-02
17.62	24.74732538	13.15040519	23.13665248	8.5730100062E-02
17.63	24.75855870	13.15930728	23.14515735	8.5692249349E-02
17.64	24.76979136	13.16820989	23.15366092	8.5654435766E-02
17.65	24.78102336	13.17711302	23.16216319	8.5616659257E-02
17.66	24.79225469	13.18601669	23.17066416	8.5578919764E-02
17.67	24.80348537	13.19492087	23.17916383	8.5541217231E-02
17.68	24.81471538	13.20382558	23.18766221	8.5503551601E-02
17.69	24.82594473	13.21273081	23.19615929	8.5465922819E-02
17.70	24.83717343	13.22163657	23.20465507	8.5428330828E-02
17.71	24.84840146	13.23054285	23.21314957	8.5390775572E-02
17.72	24.85962884	13.23944965	23.22164277	8.5353256995E-02
17.73	24.87085556	13.24835697	23.23013468	8.5315775041E-02
17.74	24.88208162	13.25726481	23.23862529	8.5278329654E-02
17.75	24.89330703	13.26617317	23.24711462	8.5240920779E-02
17.76	24.90453178	13.27508206	23.25560266	8.5203548361E-02
17.77	24.91575588	13.28399146	23.26408942	8.5166212343E-02
17.78	24.92697932	13.29290138	23.27257489	8.5128912671E-02
17.79	24.93820211	13.30181182	23.28105907	8.5091649289E-02
17.80	24.94942425	13.31072278	23.28954197	8.5054422142E-02
17.81	24.96064574	13.31963425	23.29802358	8.5017231176E-02
17.82	24.97186657	13.32854624	23.30650392	8.4980076336E-02
17.83	24.98308676	13.33745875	23.31498297	8.4942957566E-02
17.84	24.99430630	13.34637178	23.32346075	8.4905874813E-02


17.85	25.00552518	13.35528532	23.33193724	8.4868828021E-02
17.86	25.01674342	13.36419937	23.34041246	8.4831817137E-02
17.87	25.02796101	13.37311394	23.34888640	8.4794842106E-02
17.88	25.03917796	13.38202902	23.35735907	8.4757902874E-02
17.89	25.05039426	13.39094462	23.36583046	8.4720999386E-02
17.90	25.06160991	13.39986073	23.37430057	8.4684131590E-02
17.91	25.07282492	13.40877735	23.38276942	8.4647299431E-02
17.92	25.08403929	13.41769449	23.39123699	8.4610502856E-02
17.93	25.09525301	13.42661213	23.39970330	8.4573741810E-02
17.94	25.10646609	13.43553029	23.40816833	8.4537016241E-02
17.95	25.11767852	13.44444896	23.41663210	8.4500326094E-02
17.96	25.12889032	13.45336814	23.42509460	8.4463671318E-02
17.97	25.14010147	13.46228782	23.43355583	8.4427051858E-02
17.98	25.15131199	13.47120802	23.44201580	8.4390467661E-02
17.99	25.16252187	13.48012873	23.45047450	8.4353918675E-02
18.00	25.17373110	13.48904994	23.45893194	8.4317404847E-02
18.01	25.18493970	13.49797166	23.46738812	8.4280926123E-02
18.02	25.19614767	13.50689389	23.47584304	8.4244482453E-02
18.03	25.20735499	13.51581662	23.48429670	8.4208073782E-02
18.04	25.21856168	13.52473986	23.49274909	8.4171700058E-02
18.05	25.22976774	13.53366361	23.50120024	8.4135361230E-02
18.06	25.24097316	13.54258786	23.50965012	8.4099057244E-02
18.07	25.25217794	13.55151262	23.51809875	8.4062788050E-02
18.08	25.26338210	13.56043788	23.52654612	8.4026553594E-02
18.09	25.27458562	13.56936365	23.53499224	8.3990353825E-02
18.10	25.28578851	13.57828992	23.54343711	8.3954188692E-02
18.11	25.29699076	13.58721669	23.55188072	8.3918058142E-02
18.12	25.30819239	13.59614396	23.56032308	8.3881962124E-02
18.13	25.31939339	13.60507174	23.56876420	8.3845900587E-02
18.14	25.33059376	13.61400002	23.57720406	8.3809873479E-02
18.15	25.34179350	13.62292880	23.58564268	8.3773880749E-02
18.16	25.35299261	13.63185808	23.59408005	8.3737922346E-02
18.17	25.36419109	13.64078786	23.60251618	8.3701998218E-02
18.18	25.37538895	13.64971814	23.61095106	8.3666108315E-02
18.19	25.38658618	13.65864891	23.61938469	8.3630252587E-02
18.20	25.39778279	13.66758019	23.62781709	8.3594430982E-02
18.21	25.40897877	13.67651197	23.63624824	8.3558643449E-02
18.22	25.42017413	13.68544424	23.64467815	8.3522889938E-02
18.23	25.43136887	13.69437701	23.65310682	8.3487170399E-02
18.24	25.44256298	13.70331028	23.66153425	8.3451484782E-02
18.25	25.45375647	13.71224404	23.66996045	8.3415833036E-02
18.26	25.46494934	13.72117830	23.67838540	8.3380215110E-02
18.27	25.47614159	13.73011305	23.68680913	8.3344630956E-02
18.28	25.48733322	13.73904830	23.69523161	8.3309080523E-02
18.29	25.49852423	13.74798405	23.70365287	8.3273563761E-02
18.30	25.50971462	13.75692029	23.71207289	8.3238080621E-02
18.31	25.52090439	13.76585702	23.72049168	8.3202631053E-02
18.32	25.53209355	13.77479424	23.72890923	8.3167215007E-02
18.33	25.54328208	13.78373196	23.73732556	8.3131832434E-02
18.34	25.55447001	13.79267017	23.74574066	8.3096483285E-02
18.35	25.56565731	13.80160887	23.75415453	8.3061167510E-02
18.36	25.57684401	13.81054807	23.76256718	8.3025885060E-02
18.37	25.58803008	13.81948775	23.77097859	8.2990635887E-02
18.38	25.59921555	13.82842793	23.77938879	8.2955419942E-02
18.39	25.61040040	13.83736859	23.78779776	8.2920237175E-02
18.40	25.62158464	13.84630974	23.79620550	8.2885087537E-02
18.41	25.63276826	13.85525139	23.80461203	8.2849970981E-02
18.42	25.64395128	13.86419352	23.81301733	8.2814887458E-02
18.43	25.65513369	13.87313614	23.82142141	8.2779836919E-02
18.44	25.66631548	13.88207924	23.82982428	8.2744819315E-02
18.45	25.67749667	13.89102284	23.83822592	8.2709834600E-02
18.46	25.68867725	13.89996692	23.84662635	8.2674882724E-02


18.47	25.69985722	13.90891149	23.85502556	8.2639963639E-02
18.48	25.71103658	13.91785654	23.86342356	8.2605077298E-02
18.49	25.72221534	13.92680208	23.87182034	8.2570223652E-02
18.50	25.73339349	13.93574810	23.88021591	8.2535402654E-02
18.51	25.74457103	13.94469461	23.88861027	8.2500614257E-02
18.52	25.75574797	13.95364160	23.89700341	8.2465858412E-02
18.53	25.76692431	13.96258908	23.90539535	8.2431135072E-02
18.54	25.77810004	13.97153704	23.91378607	8.2396444190E-02
18.55	25.78927517	13.98048548	23.92217559	8.2361785718E-02
18.56	25.80044970	13.98943440	23.93056390	8.2327159610E-02
18.57	25.81162363	13.99838381	23.93895100	8.2292565817E-02
18.58	25.82279695	14.00733370	23.94733690	8.2258004294E-02
18.59	25.83396968	14.01628407	23.95572159	8.2223474993E-02
18.60	25.84514180	14.02523491	23.96410508	8.2188977868E-02
18.61	25.85631333	14.03418624	23.97248736	8.2154512871E-02
18.62	25.86748426	14.04313805	23.98086845	8.2120079955E-02
18.63	25.87865459	14.05209034	23.98924833	8.2085679076E-02
18.64	25.88982432	14.06104311	23.99762701	8.2051310185E-02
18.65	25.90099345	14.06999635	24.00600450	8.2016973237E-02
18.66	25.91216199	14.07895007	24.01438078	8.1982668185E-02
18.67	25.92332993	14.08790427	24.02275587	8.1948394984E-02
18.68	25.93449728	14.09685895	24.03112976	8.1914153586E-02
18.69	25.94566404	14.10581410	24.03950246	8.1879943947E-02
18.70	25.95683020	14.11476973	24.04787396	8.1845766020E-02
18.71	25.96799577	14.12372584	24.05624427	8.1811619759E-02
18.72	25.97916074	14.13268242	24.06461338	8.1777505118E-02
18.73	25.99032513	14.14163947	24.07298130	8.1743422053E-02
18.74	26.00148892	14.15059700	24.08134804	8.1709370516E-02
18.75	26.01265212	14.15955501	24.08971358	8.1675350464E-02
18.76	26.02381473	14.16851348	24.09807794	8.1641361851E-02
18.77	26.03497675	14.17747243	24.10644110	8.1607404630E-02
18.78	26.04613819	14.18643186	24.11480308	8.1573478758E-02
18.79	26.05729903	14.19539175	24.12316388	8.1539584188E-02
18.80	26.06845929	14.20435212	24.13152348	8.1505720877E-02
18.81	26.07961896	14.21331296	24.13988191	8.1471888778E-02
18.82	26.09077804	14.22227427	24.14823915	8.1438087848E-02
18.83	26.10193654	14.23123605	24.15659521	8.1404318041E-02
18.84	26.11309445	14.24019830	24.16495009	8.1370579313E-02
18.85	26.12425178	14.24916102	24.17330378	8.1336871619E-02
18.86	26.13540852	14.25812420	24.18165630	8.1303194915E-02
18.87	26.14656468	14.26708786	24.19000764	8.1269549156E-02
18.88	26.15772026	14.27605199	24.19835780	8.1235934297E-02
18.89	26.16887526	14.28501658	24.20670678	8.1202350296E-02
18.90	26.18002967	14.29398164	24.21505459	8.1168797107E-02
18.91	26.19118350	14.30294717	24.22340122	8.1135274686E-02
18.92	26.20233676	14.31191317	24.23174668	8.1101782990E-02
18.93	26.21348943	14.32087963	24.24009097	8.1068321975E-02
18.94	26.22464152	14.32984655	24.24843408	8.1034891597E-02
18.95	26.23579303	14.33881395	24.25677602	8.1001491811E-02
18.96	26.24694397	14.34778180	24.26511679	8.0968122575E-02
18.97	26.25809433	14.35675013	24.27345639	8.0934783845E-02
18.98	26.26924411	14.36571891	24.28179482	8.0901475577E-02
18.99	26.28039331	14.37468816	24.29013209	8.0868197729E-02
19.00	26.29154194	14.38365788	24.29846819	8.0834950256E-02
19.01	26.30268999	14.39262805	24.30680312	8.0801733116E-02
19.02	26.31383747	14.40159869	24.31513688	8.0768546265E-02
19.03	26.32498438	14.41056979	24.32346949	8.0735389660E-02
19.04	26.33613071	14.41954135	24.33180092	8.0702263259E-02
19.05	26.34727646	14.42851338	24.34013120	8.0669167018E-02
19.06	26.35842165	14.43748586	24.34846032	8.0636100896E-02
19.07	26.36956626	14.44645880	24.35678827	8.0603064848E-02
19.08	26.38071031	14.45543221	24.36511506	8.0570058832E-02


19.09	26.39185378	14.46440607	24.37344070	8.0537082806E-02
19.10	26.40299668	14.47338040	24.38176518	8.0504136728E-02
19.11	26.41413901	14.48235518	24.39008850	8.0471220555E-02
19.12	26.42528077	14.49133042	24.39841066	8.0438334244E-02
19.13	26.43642197	14.50030612	24.40673167	8.0405477753E-02
19.14	26.44756260	14.50928227	24.41505152	8.0372651041E-02
19.15	26.45870265	14.51825889	24.42337022	8.0339854066E-02
19.16	26.46984215	14.52723596	24.43168777	8.0307086784E-02
19.17	26.48098107	14.53621348	24.44000417	8.0274349155E-02
19.18	26.49211943	14.54519146	24.44831941	8.0241641136E-02
19.19	26.50325723	14.55416990	24.45663351	8.0208962686E-02
19.20	26.51439446	14.56314879	24.46494645	8.0176313763E-02
19.21	26.52553113	14.57212814	24.47325825	8.0143694326E-02
19.22	26.53666723	14.58110794	24.48156890	8.0111104333E-02
19.23	26.54780278	14.59008819	24.48987840	8.0078543742E-02
19.24	26.55893775	14.59906890	24.49818676	8.0046012513E-02
19.25	26.57007217	14.60805006	24.50649397	8.0013510603E-02
19.26	26.58120603	14.61703168	24.51480004	$7.9981037973 \mathrm{E}-02$
19.27	26.59233932	14.62601374	24.52310497	$7.9948594580 \mathrm{E}-02$
19.28	26.60347206	14.63499626	24.53140875	$7.9916180384 \mathrm{E}-02$
19.29	26.61460424	14.64397923	24.53971139	$7.9883795344 \mathrm{E}-02$
19.30	26.62573585	14.65296265	24.54801289	7.9851439418E-02
19.31	26.63686691	14.66194652	24.55631325	7.9819112567E-02
19.32	26.64799742	14.67093084	24.56461248	$7.9786814749 \mathrm{E}-02$
19.33	26.65912736	14.67991561	24.57291056	$7.9754545924 \mathrm{E}-02$
19.34	26.67025675	14.68890083	24.58120751	7.9722306051E-02
19.35	26.68138558	14.69788650	24.58950332	$7.9690095089 \mathrm{E}-02$
19.36	26.69251386	14.70687262	24.59779800	7.9657912999E-02
19.37	26.70364158	14.71585919	24.60609154	$7.9625759740 \mathrm{E}-02$
19.38	26.71476874	14.72484620	24.61438394	7.9593635272E-02
19.39	26.72589536	14.73383366	24.62267522	$7.9561539554 \mathrm{E}-02$
19.40	26.73702142	14.74282157	24.63096536	$7.9529472547 \mathrm{E}-02$
19.41	26.74814692	14.75180993	24.63925437	7.9497434210E-02
19.42	26.75927188	14.76079873	24.64754226	$7.9465424503 \mathrm{E}-02$
19.43	26.77039628	14.76978797	24.65582901	$7.9433443387 \mathrm{E}-02$
19.44	26.78152013	14.77877767	24.66411463	$7.9401490822 \mathrm{E}-02$
19.45	26.79264343	14.78776780	24.67239913	$7.9369566768 \mathrm{E}-02$
19.46	26.80376618	14.79675839	24.68068250	7.9337671186E-02
19.47	26.81488838	14.80574941	24.68896474	$7.9305804035 \mathrm{E}-02$
19.48	26.82601003	14.81474088	24.69724586	7.9273965277E-02
19.49	26.83713114	14.82373280	24.70552585	$7.9242154871 \mathrm{E}-02$
19.50	26.84825169	14.83272515	24.71380472	$7.9210372780 \mathrm{E}-02$
19.51	26.85937170	14.84171795	24.72208247	7.9178618962E-02
19.52	26.87049116	14.85071119	24.73035910	$7.9146893380 \mathrm{E}-02$
19.53	26.88161008	14.85970488	24.73863460	7.9115195994E-02
19.54	26.89272844	14.86869900	24.74690898	$7.9083526764 \mathrm{E}-02$
19.55	26.90384627	14.87769357	24.75518225	$7.9051885653 \mathrm{E}-02$
19.56	26.91496355	14.88668857	24.76345440	7.9020272621E-02
19.57	26.92608028	14.89568402	24.77172543	7.8988687629E-02
19.58	26.93719647	14.90467991	24.77999534	7.8957130638E-02
19.59	26.94831212	14.91367624	24.78826413	7.8925601611E-02
19.60	26.95942723	14.92267300	24.79653182	$7.8894100507 \mathrm{E}-02$
19.61	26.97054179	14.93167021	24.80479838	7.8862627289E-02
19.62	26.98165581	14.94066785	24.81306384	$7.8831181919 \mathrm{E}-02$
19.63	26.99276929	14.94966593	24.82132818	7.8799764357E-02
19.64	27.00388223	14.95866445	24.82959141	$7.8768374565 \mathrm{E}-02$
19.65	27.01499463	14.96766341	24.83785352	7.8737012506E-02
19.66	27.02610649	14.97666280	24.84611453	$7.8705678141 \mathrm{E}-02$
19.67	27.03721781	14.98566263	24.85437443	7.8674371432E-02
19.68	27.04832860	14.99466289	24.86263322	7.8643092341E-02
19.69	27.05943884	15.00366359	24.87089090	$7.8611840830 \mathrm{E}-02$
19.70	27.07054855	15.01266473	24.87914748	$7.8580616860 \mathrm{E}-02$


19.71	27.08165772	15.02166630	24.88740295	$7.8549420395 \mathrm{E}-02$
19.72	27.09276636	15.03066831	24.89565731	$7.8518251397 \mathrm{E}-02$
19.73	27.10387446	15.03967075	24.90391057	$7.8487109827 \mathrm{E}-02$
19.74	27.11498202	15.04867362	24.91216273	$7.8455995649 \mathrm{E}-02$
19.75	27.12608905	15.05767693	24.92041378	$7.8424908824 \mathrm{E}-02$
19.76	27.13719554	15.06668067	24.92866373	$7.8393849315 \mathrm{E}-02$
19.77	27.14830151	15.07568484	24.93691258	$7.8362817085 \mathrm{E}-02$
19.78	27.15940693	15.08468945	24.94516033	$7.8331812096 \mathrm{E}-02$
19.79	27.17051183	15.09369449	24.95340698	$7.8300834312 \mathrm{E}-02$
19.80	27.18161619	15.10269996	24.96165253	$7.8269883695 \mathrm{E}-02$
19.81	27.19272002	15.11170586	24.96989698	$7.8238960207 \mathrm{E}-02$
19.82	27.20382332	15.12071219	24.97814034	$7.8208063812 \mathrm{E}-02$
19.83	27.21492609	15.12971895	24.98638260	$7.8177194473 \mathrm{E}-02$
19.84	27.22602833	15.13872614	24.99462376	$7.8146352153 \mathrm{E}-02$
19.85	27.23713004	15.14773376	25.00286383	$7.8115536815 \mathrm{E}-02$
19.86	27.24823122	15.15674181	25.01110281	$7.8084748423 \mathrm{E}-02$
19.87	27.25933188	15.16575029	25.01934069	$7.8053986938 \mathrm{E}-02$
19.88	27.27043200	15.17475920	25.02757748	$7.8023252326 \mathrm{E}-02$
19.89	27.28153160	15.18376854	25.03581318	$7.7992544549 \mathrm{E}-02$
19.90	27.29263067	15.19277830	25.04404779	$7.7961863571 \mathrm{E}-02$
19.91	27.30372921	15.20178849	25.05228131	$7.7931209356 \mathrm{E}-02$
19.92	27.31482723	15.21079911	25.06051374	$7.7900581866 \mathrm{E}-02$
19.93	27.32592472	15.21981016	25.06874508	$7.7869981066 \mathrm{E}-02$
19.94	27.33702169	15.22882163	25.07697533	$7.7839406919 \mathrm{E}-02$
19.95	27.34811813	15.23783353	25.08520450	$7.7808859390 \mathrm{E}-02$
19.96	27.35921405	15.24684585	25.09343258	$7.7778338442 \mathrm{E}-02$
19.97	27.37030944	15.25585860	25.10165957	$7.7747844039 \mathrm{E}-02$
19.98	27.38140431	15.26487177	25.10988548	$7.7717376146 \mathrm{E}-02$
19.99	27.39249866	15.27388537	25.11811031	$7.7686934725 \mathrm{E}-02$
20.00	27.40359249	15.28289939	25.12633406	$7.7656519742 \mathrm{E}-02$

Table of the INTEGRALS of the functions: wzl(1/x), $1 / w z 1(1 / x)$, wzl(x)/x and $1 /[x * w z 1(x)]$
These integrals were first computed in closed form in April 1983
to answer questions about convergence and classes of functions.

$x$	$V(\mathrm{x})$	S(x)	D(x)	-car (x)
. 01	1.7555794993E-02	9.6634075233E-05	1.407414036	2.6262783271E-02
. 02	3.0355307319E-02	3.3805171526E-04	1.180092766	4.0504588452E-02
. 03	4.1468462113E-02	6.9823314349E-04	1.051815691	5.0965118932E-02
. 04	5.1520722284E-02	1.1639149853E-03	. 9632343015	5.9268165545E-02
. 05	6.0803552351E-02	1.7260950898E-03	. 8960613667	6.6139026756E-02
. 06	6.9486117294E-02	$2.3779912801 \mathrm{E}-03$	. 8422526621	7.1980244719E-02
. 07	7.7678817572E-02	3.1141880438E-03	. 7975613896	7.7042794616E-02
. 08	8.5459266945E-02	3.9301956324E-03	. 7594753156	8.1495207254E-02
. 09	9.2884927725E-02	4.8221921933E-03	. 7263869937	8.5456695404E-02
. 10	. 1000000000	$5.7868598938 \mathrm{E}-03$	. 6972068934	8.9014919081E-02
. 11	. 1068394978	6.8212743364E-03	. 6711631435	9.2236309863E-02
. 12	. 1134318145	7.9228264536E-03	. 6476894125	9.5172445649E-02
. 13	. 1198004171	9.0891653263E-03	. 6263581689	$9.7864178182 \mathrm{E}-02$
. 14	. 1259650103	$1.0318155088 \mathrm{E}-02$	. 6068389481	. 1003444099
. 15	. 1319423619	1.1607841651E-02	. 5888711756	. 1026400222
. 16	. 1377469044	1.2956426469E-02	. 5722458579	. 1047732504
. 17	. 1433911836	1.4362245676E-02	. 5567928865	. 1067626865
. 18	. 1488861999	1.5823752758E-02	. 5423720105	. 1086240257
. 19	. 1542416722	$1.7339504657 \mathrm{E}-02$	. 5288662787	. 1103706307
. 20	. 1594662459	1.8908149981E-02	. 5161771825	1120139658
. 21	. 1645676576	$2.0528419151 \mathrm{E}-02$	. 5042209984	. 1135639343
. 22	. 1695528687	2.2199115892E-02	. 4929259906	. 1150291451
. 23	1744281741	2.3919110225E-02	. 4822302437	1164171246


. 24	. 1791992911	2.5687332127E-02	4720799623	. 1177344876
25	. 1838714341	$2.7502766177 \mathrm{E}-02$	4624281212	1189870757
. 26	. 1884493766	$2.9364446847 \mathrm{E}-02$	4532333850	1201800706
. 27	. 1929375033	3.1271454337E-02	4444592329	. 1213180879
. 28	. 1973398548	3.3222911012E-02	4360732457	. 1224052550
. 29	. 2016601654	3.5217978003E-02	4280465191	. 1234452753
. 30	. 2059018962	3.7255852421E-02	4203531781	. 1244414838
. 31	. 2100682625	$3.9335764741 \mathrm{E}-02$	4129699719	. 1253968926
. 32	. 2141622593	4.1456976466E-02	4058759338	. 1263142304
. 33	. 2181866817	4.3618778034E-02	3990520949	. 1271959760
. 34	. 2221441443	4.5820486920E-02	. 3924812401	. 1280443874
. 35	. 2260370974	4.8061445925E-02	. 3861477013	1288615261
. 36	. 2298678416	5.0341021536E-02	. 3800371787	1296492791
. 37	. 2336385406	5.2658602614E-02	. 3741365881	. 1304093770
. 38	. 2373512330	5.5013599000E-02	. 3684339282	. 1311434109
. 39	. 2410078421	5.7405440337E-02	. 3629181659	. 1318528462
. 40	. 2446101853	5.9833574964E-02	. 3575791359	. 1325390351
. 41	. 2481599825	6.2297468898E-02	. 3524074530	1332032281
. 42	. 2516588632	6.4796604900E-02	. 3473944353	. 1338465829
. 43	. 2551083732	6.7330481601E-02	. 3425320367	. 1344701739
. 44	. 2585099810	6.9898612698E-02	. 3378127868	. 1350749989
. 45	. 2618650829	7.2500526208E-02	. 3332297377	. 1356619870
. 46	. 2651750082	7.5135763759E-02	. 3287764178	. 1362320036
. 47	. 2684410235	7.7803880000E-02	. 3244467889	. 1367858566
. 48	. 2716643374	8.0504441902E-02	. 3202352094	. 1373243009
. 49	. 2748461036	8.3237028264E-02	. 3161364007	. 1378480429
. 50	. 2779874248	8.6001229165E-02	. 3121454170	1383577444
. 51	. 2810893559	8.8796645467E-02	. 3082576183	. 1388540261
. 52	. 2841529066	9.1622888354E-02	. 3044686462	. 1393374712
. 53	. 2871790445	9.4479578895E-02	. 3007744016	. 1398086276
. 54	. 2901686975	$9.7366347633 \mathrm{E}-02$	. 2971710253	. 1402680112
. 55	. 2931227558	. 1002828342	. 2936548793	. 1407161080
. 56	. 2960420744	. 1032286870	. 2902225311	. 1411533763
. 57	. 2989274749	. 1062035626	. 2868707381	. 1415802489
. 58	. 3017797474	. 1092071260	. 2835964345	. 1419971344
. 59	. 3045996522	. 1122390497	. 2803967189	. 1424044195
. 60	. 3073879212	. 1152990136	. 2772688427	. 1428024703
. 61	. 3101452598	. 1183867050	. 2742101996	. 1431916334
. 62	. 3128723477	. 1215018180	. 2712183166	. 1435722376
. 63	. 3155698408	. 1246440533	. 2682908448	. 1439445947
. 64	. 3182383719	. 1278131183	. 2654255514	. 1443090011
. 65	. 3208785520	. 1310087263	. 2626203126	. 1446657383
. 66	. 3234909716	. 1342305968	. 2598731064	. 1450150740
. 67	. 3260762012	. 1374784551	. 2571820063	. 1453572632
. 68	. 3286347926	. 1407520320	. 2545451758	. 1456925484
. 69	. 3311672797	. 1440510639	. 2519608628	. 1460211610
. 70	. 3336741793	. 1473752923	. 2494273945	. 1463433216
. 71	. 3361559918	. 1507244639	. 2469431729	. 1466592406
. 72	. 3386132018	. 1540983301	. 2445066703	. 1469691192
. 73	. 3410462794	. 1574966475	. 2421164257	. 1472731493
. 74	. 3434556799	. 1609191768	. 2397710407	. 1475715145
. 75	. 3458418452	. 1643656836	. 2374691759	. 1478643904
. 76	. 3482052042	. 1678359377	. 2352095484	. 1481519451
. 77	. 3505461729	. 1713297131	. 2329909279	. 1484343396
. 78	. 3528651555	. 1748467879	. 2308121343	. 1487117280
. 79	. 3551625445	. 1783869442	. 2286720351	. 1489842582
. 80	. 3574387215	. 1819499680	. 2265695429	. 1492520719
. 81	. 3596940573	. 1855356492	. 2245036130	. 1495153052
. 82	. 3619289123	. 1891437809	. 2224732412	. 1497740886
. 83	. 3641436374	. 1927741603	. 2204774619	. 1500285477
. 84	. 3663385738	. 1964265877	. 2185153462	. 1502788028
. 85	. 3685140536	. 2001008669	. 2165859999	. 1505249700


86	. 3706704001	. 2037968050	2146885622	1507671607
87	. 3728079284	. 2075142122	. 2128222035	. 1510054820
88	. 3749269451	. 2112529019	. 2109861247	. 1512400372
89	. 3770277492	. 2150126904	2091795550	. 1514709257
. 90	. 3791106321	. 2187933971	. 2074017513	. 1516982433
. 91	. 3811758778	. 2225948442	. 2056519962	. 1519220822
92	. 3832237632	. 2264168568	. 2039295976	. 1521425314
. 93	. 3852545587	. 2302592625	. 2022338869	. 1523596767
. 94	. 3872685278	. 2341218919	. 2005642185	. 1525736010
. 95	. 3892659278	. 2380045779	. 1989199684	. 1527843840
. 96	. 3912470098	. 2419071561	. 1973005334	. 1529921031
. 97	. 3932120192	. 2458294645	. 1957053302	. 1531968327
98	. 3951611953	. 2497713437	. 1941337946	. 1533986448
99	. 3970947722	. 2537326364	. 1925853808	. 1535976090
1.00	. 3990129783	. 2577131879	1910595602	. 1537937927
1.01	. 4009160370	. 2617128455	. 1895558212	. 1539872609
1.02	. 4028041666	. 2657314588	. 1880736683	. 1541780765
1.03	. 4046775807	. 2697688798	. 1866126212	. 1543663005
1.04	. 4065364879	. 2738249621	. 1851722148	. 1545519919
1.05	. 4083810923	. 2778995618	. 1837519980	. 1547352078
1.06	. 4102115937	. 2819925369	. 1823515332	. 1549160035
1.07	. 4120281874	. 2861037474	. 1809703963	. 1550944327
1.08	. 4138310646	. 2902330550	. 1796081757	. 1552705473
1.09	. 4156204126	. 2943803235	. 1782644717	. 1554443976
1.10	. 4173964145	. 2985454187	. 1769388967	. 1556160325
1.11	. 4191592497	. 3027282080	. 1756310741	. 1557854995
1.12	. 4209090939	. 3069285604	. 1743406381	. 1559528444
1.13	. 4226461192	. 3111463471	1730672334	. 1561181118
1.14	. 4243704942	. 3153814406	. 1718105147	. 1562813451
1.15	. 4260823840	. 3196337154	. 1705701465	. 1564425863
1.16	. 4277819506	3239030472	. 1693458025	. 1566018763
1.17	. 4294693524	. 3281893138	. 1681371655	. 1567592547
1.18	. 4311447452	. 3324923943	. 1669439267	. 1569147601
1.19	. 4328082813	. 3368121692	. 1657657861	. 1570684299
1.20	. 4344601103	. 3411485209	. 1646024514	. 1572203006
1.21	. 4361003787	. 3455013329	. 1634536384	. 1573704076
1.22	. 4377292305	. 3498704904	. 1623190702	. 1575187853
1.23	. 4393468067	. 3542558799	. 1611984774	. 1576654672
1.24	. 4409532458	. 3586573894	. 1600915973	. 1578104859
1.25	. 4425486835	. 3630749082	. 1589981743	. 1579538732
1.26	. 4441332533	. 3675083268	. 1579179592	. 1580956599
1.27	. 4457070859	. 3719575374	. 1568507093	. 1582358762
1.28	. 4472703099	. 3764224332	. 1557961879	. 1583745512
1.29	. 4488230514	. 3809029087	1547541644	. 1585117136
1.30	. 4503654341	. 3853988597	1537244137	. 1586473910
1.31	. 4518975798	. 3899101832	. 1527067166	. 1587816106
1.32	. 4534196079	. 3944367776	. 1517008590	. 1589143988
1.33	. 4549316358	. 3989785421	. 1507066321	. 1590457813
1.34	. 4564337786	. 4035353773	. 1497238322	. 1591757830
1.35	. 4579261498	. 4081071851	. 1487522607	. 1593044286
1.36	. 4594088606	. 4126938681	. 1477917233	. 1594317419
1.37	. 4608820204	. 4172953304	. 1468420306	. 1595577460
1.38	. 4623457368	. 4219114771	. 1459029977	. 1596824637
1.39	. 4638001153	. 4265422141	. 1449744439	. 1598059172
1.40	. 4652452600	. 4311874486	. 1440561927	. 1599281280
1.41	. 4666812729	. 4358470888	. 1431480718	. 1600491173
1.42	. 4681082546	. 4405210439	. 1422499127	. 1601689056
1.43	. 4695263039	. 4452092241	1413615508	. 1602875131
1.44	. 4709355178	. 4499115406	. 1404828252	. 1604049594
1.45	. 4723359920	. 4546279054	. 1396135787	. 1605212637
1.46	. 4737278204	. 4593582316	. 1387536576	. 1606364447
1.47	. 4751110957	. 4641024333	. 1379029116	. 1607505208


1.48	. 4764859088	. 4688604253	. 1370611935	. 1608635098
1.49	. 4778523492	4736321235	1362283596	. 1609754292
1.50	. 4792105051	. 4784174447	1354042693	. 1610862962
1.51	. 4805604632	4832163063	1345887850	. 1611961275
1.52	. 4819023090	4880286269	1337817719	. 1613049393
1.53	. 4832361265	. 4928543257	1329830984	. 1614127477
1.54	. 4845619984	. 4976933229	. 1321926353	. 1615195684
1.55	. 4858800061	. 5025455395	. 1314102566	. 1616254165
1.56	. 4871902300	. 5074108971	. 1306358385	. 1617303071
1.57	. 4884927490	. 5122893184	1298692600	. 1618342549
1.58	. 4897876410	. 5171807267	1291104026	. 1619372741
1.59	. 4910749824	. 5220850460	. 1283591503	. 1620393788
1.60	. 4923548489	. 5270022014	1276153894	. 1621405826
1.61	. 4936273148	. 5319321184	. 1268790084	. 1622408992
1.62	. 4948924533	. 5368747233	. 1261498982	. 1623403415
1.63	. 4961503367	. 5418299432	1254279519	. 1624389225
1.64	. 4974010359	. 5467977061	. 1247130648	. 1625366548
1.65	. 4986446212	. 5517779402	1240051341	. 1626335508
1.66	. 4998811614	. 5567705750	. 1233040592	. 1627296226
1.67	. 5011107249	. 5617755402	. 1226097413	. 1628248821
1.68	. 5023333785	. 5667927665	. 1219220838	. 1629193408
1.69	. 5035491884	. 5718221850	. 1212409917	. 1630130102
1.70	. 5047582199	. 5768637276	. 1205663720	. 1631059015
1.71	. 5059605371	. 5819173270	. 1198981335	. 1631980255
1.72	. 5071562035	. 5869829162	1192361867	. 1632893930
1.73	. 5083452815	. 5920604291	. 1185804438	. 1633800146
1.74	. 5095278328	. 5971498001	. 1179308187	. 1634699006
1.75	. 5107039180	. 6022509642	. 1172872268	. 1635590610
1.76	. 5118735972	. 6073638571	. 1166495853	. 1636475058
1.77	. 5130369293	. 6124884150	1160178127	. 1637352447
1.78	. 5141939727	. 6176245747	. 1153918293	. 1638222874
1.79	. 5153447849	. 6227722737	. 1147715566	. 1639086430
1.80	. 5164894226	. 6279314498	1141569176	. 1639943209
1.81	. 5176279418	. 6331020417	. 1135478369	. 1640793300
1.82	. 5187603976	. 6382839885	. 1129442402	. 1641636793
1.83	. 5198868446	. 6434772296	1123460547	. 1642473773
1.84	. 5210073365	. 6486817055	. 1117532089	. 1643304326
1.85	. 5221219264	. 6538973567	. 1111656326	. 1644128536
1.86	. 5232306665	. 6591241245	. 1105832567	. 1644946485
1.87	. 5243336086	. 6643619507	. 1100060134	. 1645758254
1.88	. 5254308037	. 6696107775	. 1094338363	. 1646563921
1.89	. 5265223020	. 6748705478	. 1088666599	. 1647363566
1.90	. 5276081533	. 6801412048	. 1083044199	. 1648157263
1.91	. 5286884067	. 6854226922	. 1077470531	. 1648945088
1.92	. 5297631104	. 6907149544	. 1071944976	. 1649727115
1.93	. 5308323124	. 6960179361	. 1066466923	. 1650503417
1.94	. 5318960599	. 7013315825	1061035773	. 1651274064
1.95	. 5329543994	. 7066558392	. 1055650936	. 1652039126
1.96	. 5340073770	. 7119906526	. 1050311833	. 1652798672
1.97	. 5350550382	. 7173359691	. 1045017895	. 1653552770
1.98	. 5360974277	. 7226917358	. 1039768562	. 1654301486
1.99	. 5371345900	. 7280579002	. 1034563283	. 1655044885
2.00	. 5381665688	. 7334344103	. 1029401517	. 1655783032
2.01	. 5391934073	. 7388212144	. 1024282731	. 1656515989
2.02	. 5402151484	. 7442182614	. 1019206401	. 1657243818
2.03	. 5412318341	. 7496255006	. 1014172014	. 1657966580
2.04	. 5422435062	. 7550428814	. 1009179061	. 1658684336
2.05	. 5432502059	. 7604703541	. 1004227045	. 1659397144
2.06	. 5442519738	. 7659078691	9.9931547572E-02	. 1660105062
2.07	. 5452488501	. 7713553773	9.9444386993E-02	. 1660808148
2.08	. 5462408747	. 7768128299	9.8961175334E-02	. 1661506456
2.09	. 5472280867	. 7822801787	9.8481865885E-02	. 1662200043


2.10	5482105249	. 7877573757	9.8006412680E-02	. 1662888963
2.11	. 5491882276	. 7932443734	9.7534770481E-02	. 1663573268
2.12	. 5501612328	. 7987411246	9.7066894765E-02	. 1664253012
2.13	. 5511295779	8042475826	9.6602741706E-02	. 1664928247
2.14	. 5520932999	. 8097637008	9.6142268165E-02	. 1665599023
2.15	. 5530524354	. 8152894333	9.5685431673E-02	. 1666265390
2.16	. 5540070205	8208247343	9.5232190420E-02	. 1666927398
2.17	. 5549570911	. 8263695586	9.4782503242E-02	. 1667585095
2.18	. 5559026823	8319238612	9.4336329609E-02	. 1668238528
2.19	. 5568438292	. 8374875975	9.3893629607E-02	. 1668887746
2.20	. 5577805664	. 8430607231	9.3454363936E-02	. 1669532793
2.21	. 5587129278	. 8486431942	9.3018493888E-02	. 1670173716
2.22	. 5596409474	. 8542349672	9.2585981343E-02	. 1670810561
2.23	. 5605646585	8598359988	9.2156788754E-02	. 1671443369
2.24	. 5614840941	8654462461	9.1730879136E-02	. 1672072187
2.25	. 5623992869	8710656665	9.1308216059E-02	. 1672697055
2.26	. 5633102692	. 8766942178	9.0888763630E-02	. 1673318017
2.27	. 5642170728	. 8823318580	9.0472486494E-02	. 1673935114
2.28	. 5651197294	. 8879785454	9.0059349811E-02	. 1674548386
2.29	. 5660182701	. 8936342389	8.9649319259E-02	. 1675157875
2.30	. 5669127260	. 8992988972	8.9242361013E-02	. 1675763621
2.31	. 5678031275	. 9049724799	8.8838441744E-02	. 1676365661
2.32	. 5686895048	9106549464	8.8437528607E-02	. 1676964035
2.33	. 5695718880	. 9163462566	8.8039589230E-02	. 1677558781
2.34	. 5704503064	. 9220463709	8.7644591710E-02	. 1678149937
2.35	. 5713247895	9277552497	8.7252504599E-02	. 1678737538
2.36	. 5721953661	. 9334728537	8.6863296901E-02	. 1679321623
2.37	. 5730620649	9391991440	8.6476938060E-02	. 1679902226
2.38	. 5739249143	9449340821	8.6093397953E-02	. 1680479382
2.39	. 5747839422	. 9506776296	8.5712646884E-02	. 1681053128
2.40	. 5756391764	9564297483	8.5334655574E-02	. 1681623497
2.41	. 5764906444	. 9621904006	8.4959395154E-02	. 1682190522
2.42	. 5773383733	. 9679595488	8.4586837161E-02	. 1682754238
2.43	. 5781823901	9737371557	8.4216953524E-02	. 1683314678
2.44	. 5790227212	. 9795231843	8.3849716565E-02	. 1683871873
2.45	. 5798593931	. 9853175979	8.3485098986E-02	. 1684425856
2.46	. 5806924318	9911203600	8.3123073865E-02	. 1684976659
2.47	. 5815218632	. 9969314345	8.2763614651E-02	. 1685524312
2.48	. 5823477126	1.002750785	8.2406695154E-02	. 1686068846
2.49	. 5831700054	1.008578377	8.2052289539E-02	. 1686610292
2.50	. 5839887667	1.014414174	8.1700372325E-02	. 1687148679
2.51	. 5848040211	1.020258141	8.1350918373E-02	. 1687684037
2.52	. 5856157932	1.026110243	8.1003902882E-02	. 1688216395
2.53	. 5864241072	1.031970445	8.0659301386E-02	. 1688745782
2.54	. 5872289872	1.037838713	8.0317089743E-02	. 1689272226
2.55	. 5880304569	1.043715013	7.9977244136E-02	. 1689795755
2.56	. 5888285399	1.049599311	7.9639741062E-02	. 1690316396
2.57	. 5896232594	1.055491573	7.9304557328E-02	. 1690834176
2.58	. 5904146387	1.061391765	7.8971670048E-02	. 1691349123
2.59	. 5912027004	1.067299855	7.8641056637E-02	. 1691861263
2.60	. 5919874673	1.073215808	7.8312694805E-02	. 1692370622
2.61	. 5927689617	1.079139593	$7.7986562552 \mathrm{E}-02$	. 1692877226
2.62	. 5935472059	1.085071177	7.7662638165E-02	. 1693381099
2.63	. 5943222218	1.091010526	7.7340900211E-02	. 1693882269
2.64	. 5950940311	1.096957610	7.7021327536E-02	. 1694380758
2.65	. 5958626555	1.102912396	7.6703899254E-02	. 1694876592
2.66	. 5966281162	1.108874853	$7.6388594751 \mathrm{E}-02$	. 1695369794
2.67	. 5973904344	1.114844948	$7.6075393674 E-02$	. 1695860390
2.68	. 5981496310	1.120822651	7.5764275929E-02	. 1696348401
2.69	. 5989057268	1.126807930	7.5455221679E-02	. 1696833852
2.70	. 5996587423	1.132800755	7.5148211335E-02	. 1697316765
2.71	. 6004086978	1.138801095	7.4843225557E-02	. 16977971


2.72	. 6011556135	1.144808919	7.4540245247E-02	. 1698275068
2.73	. 6018995093	1.150824197	7.4239251548E-02	. 1698750503
2.74	. 6026404051	1.156846899	7.3940225835E-02	. 1699223489
2.75	. 6033783203	1.162876996	7.3643149717E-02	. 1699694048
2.76	. 6041132745	1.168914456	$7.3348005030 \mathrm{E}-02$	. 1700162201
2.77	. 6048452868	1.174959251	7.3054773836E-02	. 1700627969
2.78	. 6055743763	1.181011352	7.2763438417E-02	. 1701091373
2.79	. 6063005618	1.187070729	7.2473981270E-02	. 1701552434
2.80	. 6070238621	1.193137354	7.2186385112E-02	. 1702011171
2.81	. 6077442957	1.199211197	7.1900632864E-02	. 1702467605
2.82	. 6084618809	1.205292230	7.1616707661E-02	. 1702921755
2.83	. 6091766359	1.211380425	7.1334592837E-02	. 1703373641
2.84	. 6098885787	1.217475753	7.1054271932E-02	. 1703823282
2.85	. 6105977272	1.223578187	7.0775728680E-02	. 1704270698
2.86	. 6113040991	1.229687699	7.0498947014E-02	. 1704715907
2.87	6120077120	1.235804260	7.0223911057E-02	. 1705158928
2.88	. 6127085831	1.241927844	6.9950605122E-02	. 1705599779
2.89	. 6134067298	1.248058423	6.9679013709E-02	. 1706038478
2.90	. 6141021691	1.254195969	$6.9409121501 \mathrm{E}-02$	. 1706475043
2.91	. 6147949178	1.260340457	6.9140913362E-02	. 1706909493
2.92	. 6154849929	1.266491859	6.8874374336E-02	. 1707341845
2.93	. 6161724108	1.272650148	$6.8609489641 \mathrm{E}-02$	. 1707772115
2.94	. 6168571882	1.278815298	6.8346244668E-02	. 1708200321
2.95	. 6175393412	1.284987283	6.8084624979E-02	. 1708626481
2.96	. 6182188860	1.291166076	6.7824616306E-02	. 1709050610
2.97	. 6188958388	1.297351652	$6.7566204543 \mathrm{E}-02$	. 1709472725
2.98	. 6195702154	1.303543984	$6.7309375750 \mathrm{E}-02$	. 1709892843
2.99	. 6202420316	1.309743048	6.7054116147E-02	. 1710310979
3.00	. 6209113029	1.315948817	$6.6800412111 \mathrm{E}-02$	. 1710727151
3.01	. 6215780449	1.322161265	6.6548250178E-02	. 1711141373
3.02	. 6222422730	1.328380369	6.6297617035E-02	. 1711553661
3.03	. 6229040023	1.334606103	6.6048499523E-02	. 1711964032
3.04	. 6235632480	1.340838441	6.5800884631E-02	. 1712372499
3.05	. 6242200250	1.347077359	$6.5554759497 \mathrm{E}-02$	. 1712779078
3.06	. 6248743481	1.353322833	6.5310111404E-02	. 1713183784
3.07	. 6255262321	1.359574838	6.5066927776E-02	. 1713586632
3.08	. 6261756915	1.365833350	6.4825196180E-02	. 1713987636
3.09	. 6268227408	1.372098344	6.4584904324E-02	. 1714386812
3.10	. 6274673944	1.378369797	6.4346040050E-02	. 1714784172
3.11	. 6281096663	1.384647684	6.4108591337E-02	. 1715179732
3.12	. 6287495709	1.390931982	6.3872546297E-02	. 1715573505
3.13	. 6293871219	1.397222667	6.3637893175E-02	. 1715965504
3.14	. 6300223333	1.403519717	$6.3404620344 E-02$	. 1716355745
3.15	6306552189	1.409823106	6.3172716306E-02	. 1716744240
3.16	. 6312857922	1.416132813	6.2942169688E-02	. 1717131003
3.17	. 6319140668	1.422448815	6.2712969243E-02	. 1717516046
3.18	. 6325400560	1.428771087	6.2485103847E-02	. 1717899384
3.19	. 6331637732	1.435099608	6.2258562495E-02	. 1718281028
3.20	. 6337852316	1.441434355	6.2033334302E-02	. 1718660992
3.21	. 6344044443	1.447775305	6.1809408504E-02	. 1719039288
3.22	. 6350214241	1.454122436	6.1586774448E-02	. 1719415930
3.23	. 6356361840	1.460475726	6.1365421600E-02	. 1719790928
3.24	. 6362487368	1.466835153	6.1145339537E-02	. 1720164297
3.25	. 6368590950	1.473200694	6.0926517948E-02	. 1720536047
3.26	. 6374672713	1.479572327	6.0708946632E-02	. 1720906190
3.27	. 6380732781	1.485950032	6.0492615496E-02	. 1721274740
3.28	. 6386771277	1.492333786	6.0277514556E-02	. 1721641707
3.29	. 6392788324	1.498723567	6.0063633932E-02	. 1722007103
3.30	. 6398784044	1.505119355	5.9850963849E-02	. 1722370940
3.31	. 6404758557	1.511521128	5.9639494635E-02	. 1722733228
3.32	. 6410711983	1.517928865	5.9429216719E-02	. 1723093981
3.33	6416644440	1.524342545	5.9220120630E-02	. 1723453207


3.34	. 6422556046	1.530762147	5.9012196999E-02	. 1723810919
3.35	. 6428446918	1.537187651	5.8805436550E-02	. 1724167128
3.36	. 6434317172	1.543619034	5.8599830106E-02	. 1724521844
3.37	. 6440166922	1.550056278	5.8395368585E-02	. 1724875078
3.38	. 6445996284	1.556499361	5.8192042999E-02	. 1725226840
3.39	. 6451805369	1.562948264	5.7989844452E-02	. 1725577142
3.40	. 6457594290	1.569402965	$5.7788764140 \mathrm{E}-02$	. 1725925994
3.41	. 6463363158	1.575863446	$5.7588793349 \mathrm{E}-02$	. 1726273405
3.42	. 6469112085	1.582329685	5.7389923453E-02	. 1726619387
3.43	. 6474841179	1.588801663	5.7192145917E-02	. 1726963948
3.44	. 6480550550	1.595279361	5.6995452290E-02	. 1727307100
3.45	. 6486240306	1.601762758	5.6799834208E-02	. 1727648852
3.46	. 6491910553	1.608251835	5.6605283391E-02	1727989214
3.47	. 6497561398	1.614746572	5.6411791645E-02	. 1728328195
3.48	. 6503192946	1.621246951	5.6219350854E-02	. 1728665806
3.49	. 6508805303	1.627752952	5.6027952989E-02	. 1729002055
3.50	. 6514398571	1.634264556	5.5837590096E-02	. 1729336953
3.51	. 6519972855	1.640781743	5.5648254305E-02	1729670508
3.52	. 6525528256	1.647304495	5.5459937821E-02	. 1730002729
3.53	. 6531064876	1.653832793	5.5272632930E-02	. 1730333626
3.54	. 6536582816	1.660366618	5.5086331991E-02	. 1730663209
3.55	. 6542082176	1.666905952	5.4901027442E-02	. 1730991485
3.56	. 6547563055	1.673450777	5.4716711792E-02	. 1731318464
3.57	. 6553025551	1.680001072	5.4533377627E-02	. 1731644154
3.58	. 6558469763	1.686556822	5.4351017604E-02	. 1731968565
3.59	. 6563895787	1.693118006	5.4169624453E-02	. 1732291704
3.60	. 6569303719	1.699684607	5.3989190974E-02	. 1732613581
3.61	. 6574693657	1.706256607	5.3809710037E-02	. 1732934204
3.62	. 6580065693	1.712833989	5.3631174584E-02	. 1733253581
3.63	. 6585419923	1.719416733	5.3453577621E-02	. 1733571721
3.64	. 6590756440	1.726004822	5.3276912227E-02	. 1733888631
3.65	. 6596075336	1.732598240	5.3101171542E-02	. 1734204321
3.66	. 6601376704	1.739196967	5.2926348778E-02	. 1734518798
3.67	. 6606660636	1.745800987	$5.2752437207 \mathrm{E}-02$	. 1734832069
3.68	. 6611927222	1.752410283	5.2579430170E-02	. 1735144144
3.69	. 6617176552	1.759024836	5.2407321067E-02	. 1735455030
3.70	. 6622408716	1.765644630	5.2236103365E-02	. 1735764734
3.71	. 6627623802	1.772269648	5.2065770592E-02	. 1736073265
3.72	. 6632821899	1.778899872	5.1896316336E-02	. 1736380629
3.73	. 6638003095	1.785535286	5.1727734247E-02	. 1736686835
3.74	. 6643167475	1.792175873	5.1560018035E-02	. 1736991890
3.75	. 6648315127	1.798821615	5.1393161468E-02	. 1737295802
3.76	. 6653446136	1.805472497	5.1227158376E-02	. 1737598578
3.77	. 6658560587	1.812128502	5.1062002643E-02	. 1737900224
3.78	. 6663658564	1.818789613	5.0897688212E-02	. 1738200749
3.79	. 6668740152	1.825455814	5.0734209082E-02	. 1738500160
3.80	. 6673805434	1.832127088	5.0571559309E-02	. 1738798463
3.81	. 6678854492	1.838803419	5.0409733003E-02	. 1739095666
3.82	. 6683887408	1.845484792	5.0248724330E-02	. 1739391776
3.83	. 6688904264	1.852171189	5.0088527508E-02	. 1739686799
3.84	. 6693905140	1.858862595	4.9929136811E-02	. 1739980740
3.85	. 6698890118	1.865558994	4.9770546563E-02	. 1740273611
3.86	. 6703859276	1.872260370	4.9612751141E-02	. 1740565416
3.87	. 6708812694	1.878966707	4.9455744975E-02	. 1740856161
3.88	. 6713750451	1.885677990	4.9299522545E-02	. 1741145853
3.89	. 6718672625	1.892394203	4.9144078380E-02	. 1741434500
3.90	. 6723579292	1.899115330	4.8989407062E-02	. 1741722106
3.91	. 6728470532	1.905841356	4.8835503219E-02	. 1742008680
3.92	. 6733346419	1.912572266	4.8682361529E-02	. 1742294226
3.93	. 6738207029	1.919308044	4.8529976718E-02	. 1742578752
3.94	. 6743052439	1.926048675	$4.8378343561 \mathrm{E}-02$	. 1742862264
3.95	. 6747882723	1.932794144	$4.8227456877 \mathrm{E}-02$	1743144767


96	. 6752697955	1.939544435	4.8077311535E-02	69
3.97	. 6757498210	1.946299535	$4.7927902448 \mathrm{E}-02$	. 1743706774
3.98	. 6762283560	1.953059427	$4.7779224573 \mathrm{E}-02$	. 1743986290
3.99	. 6767054079	1.959824097	$4.7631272916 \mathrm{E}-02$	. 1744264822
4.00	. 6771809839	1.966593530	4.7484042525E-02	. 1744542377
4.01	. 6776550911	1.973367712	4.7337528491E-02	. 1744818959
4.02	. 6781277368	1.980146627	4.7191725951E-02	. 1745094576
4.03	. 6785989280	1.986930262	$4.7046630083 \mathrm{E}-02$	. 1745369232
4.04	. 6790686717	1.993718601	4.6902236109E-02	. 1745642934
4.05	. 6795369750	2.000511630	4.6758539293E-02	. 1745915687
4.06	. 6800038448	2.007309335	4.6615534939E-02	. 1746187497
4.07	. 6804692880	2.014111702	4.6473218393E-02	. 1746458369
4.08	. 6809333115	2.020918716	$4.6331585043 \mathrm{E}-02$	. 1746728309
4.09	. 6813959220	2.027730364	$4.6190630316 \mathrm{E}-02$	. 1746997323
4.10	. 6818571263	2.034546630	4.6050349679E-02	. 1747265416
4.11	. 6823169312	2.041367502	4.5910738639E-02	. 1747532594
4.12	. 6827753433	2.048192964	4.5771792740E-02	. 1747798861
4.13	. 6832323693	2.055023004	$4.5633507568 \mathrm{E}-02$	. 1748064224
4.14	. 6836880157	2.061857607	4.5495878744E-02	. 1748328687
4.15	. 6841422890	2.068696760	4.5358901929E-02	. 1748592255
4.16	. 6845951959	2.075540448	4.5222572819E-02	. 1748854935
4.17	. 6850467426	2.082388659	4.5086887149E-02	. 1749116731
4.18	. 6854969357	2.089241379	4.4951840690 E-02	. 1749377648
4.19	. 6859457815	2.096098593	4.4817429248E-02	. 1749637691
4.20	. 6863932864	2.102960290	$4.4683648667 \mathrm{E}-02$	. 1749896865
4.21	. 6868394566	2.109826455	4.4550494824E-02	. 1750155176
4.22	. 6872842984	2.116697074	4.4417963632E-02	. 1750412628
4.23	. 6877278179	2.123572136	$4.4286051040 \mathrm{E}-02$	. 1750669227
4.24	. 6881700215	2.130451626	4.4154753029E-02	. 1750924976
4.25	. 6886109150	2.137335532	$4.4024065615 \mathrm{E}-02$	. 1751179881
4.26	. 6890505048	2.144223840	$4.3893984847 \mathrm{E}-02$	. 1751433947
4.27	. 6894887967	2.151116538	4.3764506810E-02	. 1751687178
4.28	. 6899257969	2.158013612	4.3635627617E-02	. 1751939580
4.29	. 6903615113	2.164915050	4.3507343417E-02	. 1752191156
4.30	. 6907959458	2.171820838	$4.3379650391 \mathrm{E}-02$	. 1752441912
4.31	. 6912291062	2.178730964	4.3252544751E-02	. 1752691852
4.32	. 6916609986	2.185645416	4.3126022739E-02	. 1752940981
4.33	. 6920916286	2.192564180	$4.3000080632 \mathrm{E}-02$	. 1753189302
4.34	. 6925210021	2.199487244	4.2874714735E-02	. 1753436822
4.35	. 6929491248	2.206414596	4.2749921384E-02	. 1753683544
4.36	. 6933760025	2.213346223	4.2625696946E-02	. 1753929472
4.37	. 6938016407	2.220282112	4.2502037817E-02	. 1754174611
4.38	. 6942260451	2.227222251	4.2378940424E-02	. 1754418966
4.39	. 6946492213	2.234166629	4.2256401222E-02	. 1754662540
4.40	. 6950711750	2.241115232	4.2134416694E-02	. 1754905338
4.41	. 6954919115	2.248068048	4.2012983356E-02	. 1755147365
4.42	. 6959114365	2.255025066	4.1892097747E-02	. 1755388624
4.43	. 6963297553	2.261986273	4.1771756438E-02	. 1755629119
4.44	. 6967468734	2.268951657	4.1651956027E-02	. 1755868856
4.45	. 6971627962	2.275921206	4.1532693139E-02	. 1756107837
4.46	. 6975775290	2.282894909	4.1413964427E-02	. 1756346068
4.47	. 6979910772	2.289872753	4.1295766569E-02	. 1756583551
4.48	. 6984034461	2.296854726	4.1178096273E-02	. 1756820292
4.49	. 6988146409	2.303840818	4.1060950271E-02	. 1757056293
4.50	. 6992246669	2.310831015	4.0944325323E-02	. 1757291560
4.51	. 6996335291	2.317825307	4.0828218213E-02	. 1757526096
4.52	. 7000412329	2.324823682	4.0712625752E-02	. 1757759905
4.53	. 7004477834	2.331826128	4.0597544777E-02	. 1757992991
4.54	. 7008531855	2.338832634	4.0482972148E-02	. 1758225358
4.55	. 7012574445	2.345843188	4.0368904753E-02	. 1758457009
4.56	. 7016605653	2.352857779	4.0255339503E-02	. 1758687948
4.57	. 7020625529	2.359876396	4.0142273333E-02	. 1758918179


58	. 7024634124	2.366899026	4.0029703202E-02	07
4.59	. 7028631487	2.373925660	3.9917626096E-02	. 1759376533
4.60	. 7032617666	2.380956286	$3.9806039020 \mathrm{E}-02$	. 1759604664
4.61	. 7036592711	2.387990892	3.9694939007E-02	. 1759832101
4.62	. 7040556670	2.395029467	3.9584323111E-02	. 1760058848
4.63	. 7044509591	2.402072001	3.9474188410E-02	. 1760284910
4.64	. 7048451523	2.409118483	3.9364532003E-02	. 1760510289
4.65	. 7052382514	2.416168901	3.9255351013E-02	. 1760734990
4.66	. 7056302609	2.423223244	3.9146642586E-02	. 1760959015
4.67	. 7060211858	2.430281502	3.9038403890E-02	. 1761182369
4.68	. 7064110306	2.437343664	$3.8930632114 \mathrm{E}-02$	. 1761405054
4.69	. 7067998000	2.444409719	3.8823324469E-02	. 1761627075
4.70	. 7071874986	2.451479657	3.8716478189E-02	. 1761848434
4.71	. 7075741311	2.458553466	$3.8610090526 \mathrm{E}-02$	. 1762069135
4.72	. 7079597019	2.465631136	3.8504158757E-02	. 1762289182
4.73	. 7083442157	2.472712656	3.8398680179E-02	. 1762508577
4.74	. 7087276770	2.479798017	3.8293652107E-02	. 1762727324
4.75	. 7091100903	2.486887206	3.8189071879E-02	. 1762945427
4.76	. 7094914599	2.493980215	3.8084936855E-02	. 1763162889
4.77	. 7098717905	2.501077032	$3.7981244410 \mathrm{E}-02$	. 1763379712
4.78	. 7102510863	2.508177647	$3.7877991945 \mathrm{E}-02$	. 1763595900
4.79	. 7106293518	2.515282050	$3.7775176876 \mathrm{E}-02$	. 1763811457
4.80	. 7110065913	2.522390231	$3.7672796641 \mathrm{E}-02$	. 1764026386
4.81	. 7113828092	2.529502179	$3.7570848696 E-02$	. 1764240688
4.82	. 7117580097	2.536617884	3.7469330519E-02	. 1764454369
4.83	. 7121321972	2.543737336	$3.7368239603 \mathrm{E}-02$	. 1764667431
4.84	. 7125053759	2.550860524	$3.7267573464 \mathrm{E}-02$	. 1764879877
4.85	. 7128775501	2.557987440	$3.7167329634 \mathrm{E}-02$	. 1765091709
4.86	. 7132487239	2.565118072	$3.7067505663 \mathrm{E}-02$	. 1765302932
4.87	. 7136189016	2.572252411	3.6968099123E-02	. 1765513549
4.88	. 7139880873	2.579390447	3.6869107599E-02	. 1765723561
4.89	. 7143562851	2.586532169	3.6770528699E-02	. 1765932972
4.90	. 7147234992	2.593677569	3.6672360045E-02	. 1766141786
4.91	. 7150897337	2.600826636	3.6574599280E-02	. 1766350005
4.92	. 7154549925	2.607979361	3.6477244062E-02	. 1766557631
4.93	. 7158192799	2.615135733	3.6380292067E-02	. 1766764669
4.94	. 7161825997	2.622295743	3.6283740988E-02	. 1766971120
4.95	. 7165449560	2.629459382	3.6187588536E-02	. 1767176989
4.96	. 7169063528	2.636626639	3.6091832439E-02	. 1767382276
4.97	. 7172667940	2.643797505	3.5996470440E-02	. 1767586986
4.98	. 7176262835	2.650971972	3.5901500300E-02	. 1767791121
4.99	. 7179848253	2.658150028	3.5806919796E-02	. 1767994689
5.00	. 7183424232	2.665331665	3.5712726722E-02	. 1768197683
5.01	. 7186990811	2.672516873	3.5618918886E-02	. 1768400110
5.02	. 7190548029	2.679705643	3.5525494115E-02	. 1768601973
5.03	. 7194095923	2.686897966	3.5432450249E-02	. 1768803276
5.04	. 7197634531	2.694093832	3.5339785146E-02	. 1769004020
5.05	. 7201163892	2.701293232	3.5247496679E-02	. 1769204208
5.06	. 7204684043	2.708496157	3.5155582734E-02	. 1769403843
5.07	. 7208195021	2.715702597	3.5064041216E-02	. 1769602927
5.08	. 7211696864	2.722912544	3.4972870043E-02	. 1769801464
5.09	. 7215189608	2.730125988	3.4882067149E-02	. 1769999455
5.10	. 7218673289	2.737342920	$3.4791630481 \mathrm{E}-02$	. 1770196904
5.11	. 7222147946	2.744563331	3.4701558003E-02	. 1770393813
5.12	. 7225613613	2.751787213	3.4611847693E-02	. 1770590184
5.13	. 7229070327	2.759014556	3.4522497542E-02	. 1770786020
5.14	. 7232518124	2.766245351	3.4433505557E-02	. 1770981324
5.15	. 7235957040	2.773479589	3.4344869759E-02	. 1771176097
5.16	. 7239387110	2.780717262	3.4256588183E-02	. 1771370344
5.17	. 7242808370	2.787958360	3.4168658877E-02	. 1771564065
5.18	. 7246220854	2.795202876	$3.4081079904 \mathrm{E}-02$	. 1771757263
5.19	. 7249624597	2.802450799	$3.3993849341 \mathrm{E}-02$	. 1771949942


5.20	. 7253019635	2.809702122	3.3906965278E-02	. 1772142103
5.21	. 7256406002	2.816956835	3.3820425818E-02	. 1772333748
5.22	. 7259783732	2.824214931	3.3734229078E-02	. 1772524880
5.23	. 7263152859	2.831476400	3.3648373188E-02	. 1772715502
5.24	. 7266513418	2.838741234	3.3562856292E-02	1772905616
5.25	. 7269865441	2.846009424	3.3477676546E-02	. 1773095224
5.26	. 7273208964	2.853280962	3.3392832119E-02	1773284328
5.27	. 7276544019	2.860555839	3.3308321194E-02	1773472931
5.28	. 7279870639	2.867834047	3.3224141964E-02	. 1773661035
5.29	. 7283188858	2.875115578	3.3140292638E-02	1773848643
5.30	. 7286498709	2.882400422	3.3056771436E-02	. 1774035756
5.31	. 7289800224	2.889688572	3.2973576589E-02	1774222377
5.32	7293093435	2.896980020	3.2890706342E-02	1774408508
5.33	. 7296378376	2.904274756	3.2808158952E-02	. 1774594151
5.34	7299655078	2.911572774	3.2725932687E-02	. 1774779309
5.35	7302923573	2.918874064	3.2644025828E-02	1774963984
5.36	. 7306183893	2.926178618	3.2562436668E-02	. 1775148177
5.37	7309436071	2.933486429	3.2481163511E-02	. 1775331892
5.38	. 7312680136	2.940797488	3.2400204673E-02	. 1775515130
5.39	7315916122	2.948111786	3.2319558481E-02	1775697893
5.40	7319144059	2.955429317	$3.2239223274 \mathrm{E}-02$	1775880183
5.41	. 7322363977	2.962750072	3.2159197403E-02	. 1776062004
5.42	. 7325575908	2.970074043	3.2079479229E-02	. 1776243356
5.43	. 7328779883	2.977401221	3.2000067125E-02	. 1776424241
5.44	. 7331975932	2.984731600	3.1920959475E-02	. 1776604663
5.45	. 7335164085	2.992065170	3.1842154673E-02	. 1776784622
5.46	. 7338344373	2.999401925	3.1763651125E-02	. 1776964122
5.47	. 7341516825	3.006741856	3.1685447248E-02	1777143163
5.48	7344681472	3.014084956	3.1607541469E-02	1777321748
5.49	. 7347838343	3.021431217	3.1529932226E-02	. 1777499880
5.50	. 7350987468	3.028780630	3.1452617966E-02	. 1777677559
5.51	. 7354128877	3.036133189	3.1375597150E-02	. 1777854789
5.52	. 7357262598	3.043488886	3.1298868245E-02	. 1778031570
5.53	. 7360388660	3.050847712	3.1222429732E-02	1778207905
5.54	. 7363507093	3.058209660	3.1146280100E-02	. 1778383796
5.55	. 7366617926	3.065574723	3.1070417848E-02	. 1778559245
5.56	. 7369721186	3.072942894	3.0994841488E-02	. 1778734254
5.57	. 7372816904	3.080314163	$3.0919549537 \mathrm{E}-02$	. 1778908824
5.58	. 7375905106	3.087688525	$3.0844540526 \mathrm{E}-02$	. 1779082958
5.59	. 7378985821	3.095065971	3.0769812993E-02	. 1779256657
5.60	. 7382059078	3.102446494	3.0695365489E-02	. 1779429924
5.61	. 7385124903	3.109830087	3.0621196572E-02	. 1779602760
5.62	. 7388183326	3.117216741	3.0547304809E-02	. 1779775166
5.63	. 7391234374	3.124606451	$3.0473688778 \mathrm{E}-02$	1779947146
5.64	. 7394278073	3.131999208	3.0400347067E-02	1780118700
5.65	. 7397314452	3.139395005	$3.0327278272 \mathrm{E}-02$	1780289831
5.66	. 7400343538	3.146793834	3.0254480997E-02	1780460540
5.67	. 7403365357	3.154195689	3.0181953859E-02	. 1780630829
5.68	. 7406379937	3.161600563	$3.0109695480 \mathrm{E}-02$	. 1780800700
5.69	. 7409387305	3.169008447	3.0037704493E-02	. 1780970155
5.70	. 7412387487	3.176419335	$2.9965979541 \mathrm{E}-02$	. 1781139195
5.71	. 7415380510	3.183833219	$2.9894519273 \mathrm{E}-02$	. 1781307822
5.72	. 7418366400	3.191250093	$2.9823322350 \mathrm{E}-02$	. 1781476038
5.73	. 7421345183	3.198669950	2.9752387439E-02	. 1781643845
5.74	. 7424316886	3.206092781	2.9681713216E-02	. 1781811244
5.75	. 7427281534	3.213518581	2.9611298368E-02	. 1781978238
5.76	. 7430239154	3.220947342	2.9541141588E-02	. 1782144827
5.77	. 7433189771	3.228379057	2.9471241578E-02	. 1782311014
5.78	. 7436133411	3.235813719	2.9401597050E-02	. 1782476800
5.79	. 7439070099	3.243251322	$2.9332206722 \mathrm{E}-02$	. 1782642186
5.80	. 7441999861	3.250691857	2.9263069320E-02	. 1782807176
5.81	7444922721	3.258135319	2.9194183582E-02	. 1782971769


2	7447838706	3.265581700	2.9125548250E-02	. 1783135968
5.83	. 7450747839	3.273030994	2.9057162076E-02	. 1783299775
5.84	. 7453650147	3.280483194	2.8989023819E-02	. 1783463191
5.85	. 7456545652	3.287938292	2.8921132247E-02	1783626217
5.86	. 7459434381	3.295396283	2.8853486136E-02	. 1783788856
5.87	. 7462316358	3.302857159	2.8786084268E-02	. 1783951108
5.88	. 7465191606	3.310320913	$2.8718925435 \mathrm{E}-02$	. 1784112976
5.89	. 7468060151	3.317787540	$2.8652008434 \mathrm{E}-02$	. 1784274461
5.90	. 7470922016	3.325257031	2.8585332073E-02	. 1784435565
5.91	. 7473777225	3.332729382	2.8518895165E-02	. 1784596289
5.92	. 7476625803	3.340204584	2.8452696532E-02	. 1784756634
5.93	. 7479467773	3.347682631	2.8386735001E-02	. 1784916603
5.94	. 7482303158	3.355163517	2.8321009410E-02	1785076197
5.95	. 7485131982	3.362647235	$2.8255518601 \mathrm{E}-02$	. 1785235417
5.96	. 7487954269	3.370133779	2.8190261426E-02	. 1785394265
5.97	. 7490770042	3.377623141	2.8125236742E-02	. 1785552742
5.98	. 7493579324	3.385115317	2.8060443414E-02	. 1785710850
5.99	. 7496382139	3.392610298	$2.7995880315 \mathrm{E}-02$	1785868590
6.00	. 7499178508	3.400108079	$2.7931546324 \mathrm{E}-02$	1786025964
6.01	. 7501968456	3.407608653	$2.7867440327 \mathrm{E}-02$	. 1786182974
6.02	. 7504752004	3.415112014	$2.7803561218 \mathrm{E}-02$	. 1786339620
6.03	. 7507529175	3.422618155	$2.7739907896 \mathrm{E}-02$	. 1786495904
6.04	. 7510299993	3.430127070	$2.7676479268 \mathrm{E}-02$	. 1786651828
6.05	. 7513064479	3.437638753	$2.7613274248 \mathrm{E}-02$	. 1786807393
6.06	. 7515822655	3.445153197	$2.7550291757 \mathrm{E}-02$	. 1786962600
6.07	. 7518574544	3.452670396	2.7487530722E-02	. 1787117452
6.08	. 7521320169	3.460190344	2.7424990076E-02	. 1787271949
6.09	. 7524059550	3.467713034	$2.7362668759 \mathrm{E}-02$	. 1787426092
6.10	. 7526792710	3.475238461	$2.7300565720 \mathrm{E}-02$	. 1787579884
6.11	. 7529519670	3.482766617	$2.7238679910 \mathrm{E}-02$	. 1787733325
6.12	. 7532240453	3.490297498	2.7177010290E-02	. 1787886417
6.13	. 7534955079	3.497831096	2.7115555826E-02	. 1788039162
6.14	. 7537663571	3.505367406	$2.7054315491 \mathrm{E}-02$	. 1788191560
6.15	. 7540365949	3.512906421	2.6993288263E-02	. 1788343613
6.16	. 7543062236	3.520448136	$2.6932473127 \mathrm{E}-02$	1788495323
6.17	. 7545752451	3.527992544	$2.6871869074 \mathrm{E}-02$	. 1788646690
6.18	. 7548436617	3.535539639	2.6811475103E-02	. 1788797716
6.19	. 7551114753	3.543089415	2.6751290215E-02	. 1788948403
6.20	. 7553786882	3.550641866	$2.6691313422 \mathrm{E}-02$	. 1789098752
6.21	. 7556453023	3.558196987	2.6631543738E-02	. 1789248763
6.22	. 7559113197	3.565754770	2.6571980186E-02	. 1789398439
6.23	. 7561767426	3.573315211	2.6512621791E-02	. 1789547780
6.24	. 7564415728	3.580878303	2.6453467588E-02	. 1789696789
6.25	. 7567058126	3.588444041	2.6394516617E-02	. 1789845465
6.26	. 7569694638	3.596012418	2.6335767921E-02	. 1789993811
6.27	. 7572325286	3.603583428	2.6277220551E-02	. 1790141828
6.28	. 7574950089	3.611157066	2.6218873565E-02	. 1790289517
6.29	. 7577569068	3.618733326	2.6160726023E-02	. 1790436879
6.30	. 7580182241	3.626312202	2.6102776994E-02	. 1790583916
6.31	. 7582789630	3.633893689	2.6045025551E-02	. 1790730629
6.32	. 7585391253	3.641477780	2.5987470772E-02	. 1790877018
6.33	. 7587987130	3.649064469	2.5930111743E-02	. 1791023086
6.34	. 7590577282	3.656653752	2.5872947552E-02	. 1791168834
6.35	. 7593161726	3.664245622	2.5815977295E-02	. 1791314262
6.36	. 7595740483	3.671840074	2.5759200073E-02	. 1791459372
6.37	. 7598313573	3.679437101	2.5702614991E-02	. 1791604165
6.38	. 7600881013	3.687036699	2.5646221161E-02	. 1791748642
6.39	. 7603442823	3.694638861	$2.5590017698 \mathrm{E}-02$	. 1791892805
6.40	. 7605999023	3.702243583	2.5534003726E-02	. 1792036655
6.41	. 7608549630	3.709850857	2.5478178370E-02	. 1792180192
6.42	. 7611094665	3.717460680	2.5422540762E-02	. 1792323410
6.43	. 7613634145	3.725073045	$2.5367090041 \mathrm{E}-02$	1792466327


44	. 7616168089	3.732687947	2.5311825347E-02	35
6.45	. 7618696516	3.740305379	2.5256745828E-02	. 1792751236
6.46	. 7621219444	3.747925338	2.5201850637E-02	. 1792893230
6.47	. 7623736892	3.755547816	2.5147138930E-02	. 1793034919
6.48	. 7626248878	3.763172810	2.5092609870E-02	. 1793176304
6.49	. 7628755420	3.770800312	$2.5038262624 \mathrm{E}-02$	. 1793317386
6.50	. 7631256537	3.778430319	$2.4984096364 \mathrm{E}-02$	. 1793458167
6.51	. 7633752245	3.786062824	$2.4930110266 \mathrm{E}-02$	. 1793598646
6.52	. 7636242565	3.793697821	$2.4876303512 \mathrm{E}-02$	. 1793738827
6.53	. 7638727512	3.801335307	2.4822675288E-02	. 1793878708
6.54	. 7641207106	3.808975275	$2.4769224786 \mathrm{E}-02$	. 1794018293
6.55	. 7643681363	3.816617719	2.4715951200E-02	. 1794157581
6.56	. 7646150302	3.824262636	$2.4662853731 \mathrm{E}-02$	. 1794296574
6.57	. 7648613939	3.831910018	$2.4609931585 \mathrm{E}-02$	. 1794435273
6.58	. 7651072294	3.839559862	2.4557183970 E-02	. 1794573679
6.59	. 7653525382	3.847212161	$2.4504610101 \mathrm{E}-02$	. 1794711793
6.60	. 7655973222	3.854866911	2.4452209196E-02	. 1794849616
6.61	. 7658415830	3.862524106	2.4399980479E-02	. 1794987149
6.62	. 7660853223	3.870183741	$2.4347923177 \mathrm{E}-02$	. 1795124394
6.63	. 7663285420	3.877845810	$2.4296036522 \mathrm{E}-02$	. 1795261351
6.64	. 7665712436	3.885510310	$2.4244319751 \mathrm{E}-02$	. 1795398021
6.65	. 7668134290	3.893177234	2.4192772104E-02	. 1795534406
6.66	. 7670550996	3.900846577	$2.4141392827 \mathrm{E}-02$	. 1795670506
6.67	. 7672962574	3.908518334	2.4090181168E-02	. 1795806323
6.68	. 7675369038	3.916192500	$2.4039136382 \mathrm{E}-02$	. 1795941857
6.69	. 7677770407	3.923869070	$2.3988257726 \mathrm{E}-02$	. 1796077110
6.70	. 7680166695	3.931548039	$2.3937544463 \mathrm{E}-02$	. 1796212082
6.71	. 7682557921	3.939229402	$2.3886995859 \mathrm{E}-02$	. 1796346775
6.72	. 7684944100	3.946913153	$2.3836611185 \mathrm{E}-02$	. 1796481189
6.73	. 7687325249	3.954599288	$2.3786389714 \mathrm{E}-02$	. 1796615326
6.74	. 7689701383	3.962287802	$2.3736330727 \mathrm{E}-02$	. 1796749186
6.75	. 7692072520	3.969978690	2.3686433505E-02	. 1796882771
6.76	. 7694438675	3.977671946	2.3636697336E-02	. 1797016081
6.77	. 7696799865	3.985367565	$2.3587121510 \mathrm{E}-02$	. 1797149118
6.78	. 7699156105	3.993065544	$2.3537705323 E-02$	. 1797281883
6.79	. 7701507411	4.000765876	$2.3488448073 \mathrm{E}-02$	. 1797414375
6.80	. 7703853800	4.008468557	$2.3439349062 \mathrm{E}-02$	. 1797546597
6.81	. 7706195286	4.016173582	2.3390407599E-02	. 1797678550
6.82	. 7708531887	4.023880946	2.3341622992E-02	. 1797810234
6.83	. 7710863616	4.031590644	2.3292994557E-02	. 1797941649
6.84	. 7713190491	4.039302671	2.3244521612E-02	. 1798072799
6.85	. 7715512526	4.047017023	$2.3196203478 \mathrm{E}-02$	. 1798203682
6.86	. 7717829737	4.054733695	$2.3148039482 \mathrm{E}-02$	. 1798334300
6.87	. 7720142139	4.062452681	$2.3100028953 \mathrm{E}-02$	. 1798464655
6.88	. 7722449747	4.070173977	$2.3052171225 \mathrm{E}-02$	. 1798594746
6.89	. 7724752578	4.077897579	2.3004465634E-02	. 1798724575
6.90	. 7727050646	4.085623481	2.2956911521E-02	. 1798854143
6.91	. 7729343965	4.093351679	2.2909508231E-02	. 1798983450
6.92	. 7731632552	4.101082167	2.2862255111E-02	. 1799112499
6.93	. 7733916421	4.108814942	2.2815151513E-02	. 1799241288
6.94	. 7736195587	4.116549999	2.2768196791E-02	. 1799369820
6.95	. 7738470066	4.124287332	2.2721390306E-02	. 1799498095
6.96	. 7740739870	4.132026937	2.2674731418E-02	. 1799626115
6.97	. 7743005017	4.139768810	2.2628219493E-02	. 1799753879
6.98	. 7745265519	4.147512946	2.2581853901E-02	. 1799881390
6.99	. 7747521392	4.155259340	2.2535634014E-02	. 1800008647
7.00	. 7749772651	4.163007987	2.2489559209E-02	. 1800135652
7.01	. 7752019309	4.170758883	2.2443628864E-02	. 1800262405
7.02	. 7754261381	4.178512024	2.2397842363E-02	. 1800388908
7.03	. 7756498882	4.186267405	2.2352199092E-02	. 1800515161
7.04	. 7758731826	4.194025020	2.2306698440E-02	. 1800641165
7.05	. 7760960227	4.201784867	2.2261339801E-02	. 1800766921


7.06	. 7763184099	4.209546939	2.2216122570E-02	. 1800892430
7.07	. 7765403456	4.217311233	2.2171046147E-02	. 1801017693
7.08	. 7767618313	4.225077745	2.2126109934E-02	. 1801142710
7.09	. 7769828683	4.232846469	2.2081313338E-02	. 1801267483
7.10	. 7772034580	4.240617401	2.2036655767E-02	. 1801392012
7.11	. 7774236018	4.248390536	2.1992136635E-02	. 1801516297
7.12	. 7776433012	4.256165871	2.1947755356E-02	. 1801640341
7.13	. 7778625574	4.263943401	2.1903511350E-02	. 1801764143
7.14	. 7780813719	4.271723121	2.1859404037E-02	1801887705
7.15	. 7782997459	4.279505027	2.1815432843E-02	. 1802011027
7.16	. 7785176810	4.287289114	2.1771597197E-02	. 1802134109
7.17	. 7787351783	4.295075379	2.1727896528E-02	. 1802256954
7.18	. 7789522394	4.302863816	$2.1684330271 \mathrm{E}-02$	. 1802379562
7.19	. 7791688654	4.310654422	2.1640897863E-02	. 1802501933
7.20	. 7793850578	4.318447192	2.1597598744E-02	. 1802624068
7.21	. 7796008178	4.326242122	2.1554432358E-02	. 1802745968
7.22	. 7798161468	4.334039207	2.1511398150E-02	. 1802867634
7.23	. 7800310462	4.341838443	2.1468495570E-02	. 1802989067
7.24	. 7802455172	4.349639827	2.1425724069E-02	. 1803110267
7.25	. 7804595611	4.357443352	2.1383083102E-02	. 1803231236
7.26	. 7806731793	4.365249016	2.1340572128E-02	. 1803351973
7.27	. 7808863730	4.373056815	2.1298190606E-02	. 1803472480
7.28	. 7810991435	4.380866742	2.1255938000E-02	. 1803592757
7.29	. 7813114922	4.388678796	2.1213813777E-02	. 1803712806
7.30	. 7815234202	4.396492971	2.1171817405E-02	. 1803832627
7.31	. 7817349290	4.404309263	2.1129948357E-02	. 1803952220
7.32	. 7819460196	4.412127668	2.1088206107E-02	. 1804071587
7.33	. 7821566935	4.419948182	2.1046590133E-02	. 1804190728
7.34	. 7823669518	4.427770801	2.1005099915E-02	. 1804309644
7.35	. 7825767959	4.435595520	$2.0963734935 \mathrm{E}-02$	. 1804428336
7.36	. 7827862270	4.443422335	2.0922494680E-02	. 1804546804
7.37	. 7829952462	4.451251243	$2.0881378638 \mathrm{E}-02$	. 1804665050
7.38	. 7832038549	4.459082239	2.0840386300E-02	. 1804783073
7.39	. 7834120544	4.466915319	$2.0799517160 \mathrm{E}-02$	. 1804900875
7.40	. 7836198457	4.474750478	$2.0758770713 \mathrm{E}-02$	. 1805018456
7.41	. 7838272302	4.482587714	$2.0718146460 \mathrm{E}-02$	. 1805135817
7.42	. 7840342090	4.490427022	$2.0677643901 \mathrm{E}-02$	. 1805252959
7.43	. 7842407835	4.498268397	$2.0637262540 \mathrm{E}-02$	. 1805369883
7.44	. 7844469547	4.506111836	$2.0597001884 \mathrm{E}-02$	. 1805486589
7.45	. 7846527239	4.513957335	$2.0556861444 \mathrm{E}-02$	. 1805603078
7.46	. 7848580923	4.521804889	2.0516840729E-02	. 1805719350
7.47	. 7850630611	4.529654495	$2.0476939256 \mathrm{E}-02$	. 1805835406
7.48	. 7852676315	4.537506149	2.0437156539E-02	. 1805951248
7.49	. 7854718046	4.545359847	$2.0397492100 \mathrm{E}-02$	. 1806066875
7.50	. 7856755817	4.553215584	$2.0357945460 \mathrm{E}-02$	. 1806182289
7.51	. 7858789639	4.561073357	2.0318516142E-02	. 1806297490
7.52	. 7860819524	4.568933162	$2.0279203675 \mathrm{E}-02$	. 1806412478
7.53	. 7862845484	4.576794995	2.0240007586E-02	. 1806527255
7.54	. 7864867530	4.584658851	$2.0200927408 \mathrm{E}-02$	. 1806641821
7.55	. 7866885673	4.592524728	2.0161962675E-02	. 1806756177
7.56	. 7868899926	4.600392621	$2.0123112922 \mathrm{E}-02$	. 1806870323
7.57	. 7870910300	4.608262527	2.0084377689E-02	. 1806984260
7.58	. 7872916805	4.616134441	$2.0045756517 \mathrm{E}-02$	. 1807097989
7.59	. 7874919455	4.624008359	$2.0007248949 \mathrm{E}-02$	. 1807211511
7.60	. 7876918259	4.631884278	1.9968854531E-02	. 1807324826
7.61	. 7878913229	4.639762194	1.9930572811E-02	. 1807437934
7.62	. 7880904377	4.647642104	1.9892403339E-02	. 1807550837
7.63	. 7882891714	4.655524002	1.9854345669E-02	. 1807663535
7.64	. 7884875250	4.663407886	1.9816399354E-02	. 1807776028
7.65	. 7886854997	4.671293751	1.9778563953E-02	. 1807888318
7.66	. 7888830967	4.679181594	1.9740839025E-02	. 1808000405
7.67	. 7890803169	4.687071412	1.9703224131E-02	. 1808112289


7.68	. 7892771615	4.694963200	1.9665718835E-02	. 1808223972
7.69	. 7894736316	4.702856954	1.9628322703E-02	. 1808335454
7.70	. 7896697283	4.710752671	1.9591035304E-02	. 1808446735
7.71	. 7898654527	4.718650347	1.9553856208E-02	. 1808557816
7.72	. 7900608058	4.726549979	1.9516784987E-02	. 1808668698
7.73	. 7902557888	4.734451562	1.9479821217E-02	. 1808779382
7.74	. 7904504026	4.742355093	1.9442964474E-02	. 1808889867
7.75	. 7906446484	4.750260569	1.9406214338E-02	. 1809000155
7.76	. 7908385272	4.758167985	1.9369570388E-02	. 1809110246
7.77	. 7910320402	4.766077338	1.9333032209E-02	. 1809220142
7.78	. 7912251882	4.773988625	1.9296599386E-02	. 1809329841
7.79	. 7914179725	4.781901841	1.9260271506E-02	. 1809439346
7.80	. 7916103940	4.789816983	1.9224048159E-02	. 1809548656
7.81	. 7918024538	4.797734047	1.9187928936E-02	. 1809657773
7.82	. 7919941529	4.805653031	1.9151913430E-02	. 1809766696
7.83	. 7921854924	4.813573929	1.9116001237E-02	. 1809875427
7.84	. 7923764733	4.821496739	1.9080191955E-02	. 1809983966
7.85	. 7925670966	4.829421458	1.9044485183E-02	. 1810092313
7.86	. 7927573633	4.837348080	1.9008880522E-02	. 1810200470
7.87	. 7929472745	4.845276604	1.8973377577E-02	. 1810308437
7.88	. 7931368312	4.853207024	1.8937975952E-02	. 1810416213
7.89	. 7933260344	4.861139339	1.8902675254E-02	. 1810523801
7.90	. 7935148851	4.869073544	1.8867475094E-02	. 1810631201
7.91	. 7937033842	4.877009636	1.8832375082E-02	. 1810738412
7.92	. 7938915329	4.884947611	1.8797374832E-02	. 1810845436
7.93	. 7940793321	4.892887465	1.8762473958E-02	. 1810952274
7.94	. 7942667827	4.900829196	1.8727672077E-02	. 1811058925
7.95	. 7944538858	4.908772800	1.8692968809E-02	. 1811165391
7.96	. 7946406424	4.916718273	1.8658363774E-02	. 1811271671
7.97	. 7948270534	4.924665611	1.8623856594E-02	. 1811377768
7.98	. 7950131199	4.932614812	1.8589446895E-02	. 1811483680
7.99	. 7951988427	4.940565873	1.8555134301E-02	. 1811589408
8.00	. 7953842229	4.948518788	1.8520918441E-02	. 1811694954
8.01	. 7955692614	4.956473556	1.8486798946E-02	. 1811800318
8.02	. 7957539592	4.964430172	1.8452775445E-02	. 1811905500
8.03	. 7959383172	4.972388634	1.8418847574E-02	. 1812010501
8.04	. 7961223365	4.980348937	1.8385014968E-02	. 1812115321
8.05	. 7963060178	4.988311080	1.8351277262E-02	. 1812219961
8.06	. 7964893623	4.996275057	1.8317634097E-02	. 1812324421
8.07	. 7966723708	5.004240866	1.8284085112E-02	. 1812428702
8.08	. 7968550443	5.012208503	1.8250629950E-02	. 1812532805
8.09	. 7970373837	5.020177965	1.8217268254E-02	. 1812636730
8.10	. 7972193900	5.028149250	1.8183999671E-02	. 1812740477
8.11	. 7974010640	5.036122352	1.8150823848E-02	. 1812844048
8.12	. 7975824068	5.044097270	1.8117740433E-02	. 1812947442
8.13	. 7977634192	5.052073999	1.8084749078E-02	. 1813050660
8.14	. 7979441021	5.060052537	1.8051849436E-02	. 1813153703
8.15	. 7981244565	5.068032880	1.8019041159E-02	. 1813256571
8.16	. 7983044832	5.076015025	1.7986323904E-02	. 1813359265
8.17	. 7984841832	5.083998969	$1.7953697329 \mathrm{E}-02$	. 1813461785
8.18	. 7986635575	5.091984708	1.7921161093E-02	. 1813564132
8.19	. 7988426068	5.099972239	1.7888714855E-02	. 1813666306
8.20	. 7990213320	5.107961559	1.7856358279E-02	. 1813768307
8.21	. 7991997342	5.115952664	1.7824091028E-02	. 1813870137
8.22	. 7993778142	5.123945552	1.7791912769E-02	. 1813971796
8.23	. 7995555728	5.131940220	$1.7759823167 \mathrm{E}-02$	. 1814073283
8.24	. 7997330109	5.139936663	1.7727821892E-02	. 1814174601
8.25	. 7999101295	5.147934879	$1.7695908614 \mathrm{E}-02$	. 1814275749
8.26	. 8000869294	5.155934864	1.7664083005E-02	. 1814376727
8.27	. 8002634115	5.163936616	$1.7632344738 \mathrm{E}-02$	. 1814477537
8.28	. 8004395766	5.171940131	1.7600693489E-02	. 1814578179
8.29	. 8006154256	5.179945407	1.7569128933E-02	. 1814678652


8.30	8007909594	5.187952439	1.7537650749E-02	59
8.31	. 8009661789	5.195961225	1.7506258616E-02	. 1814879098
8.32	. 8011410849	5.203971761	1.7474952215E-02	. 1814979071
8.33	. 8013156782	5.211984045	1.7443731229E-02	. 1815078878
8.34	. 8014899598	5.219998074	1.7412595342E-02	. 1815178520
8.35	. 8016639304	5.228013844	1.7381544239E-02	. 1815277997
8.36	. 8018375910	5.236031352	1.7350577607E-02	. 1815377310
8.37	. 8020109423	5.244050594	1.7319695135E-02	. 1815476459
8.38	. 8021839852	5.252071569	1.7288896513E-02	. 1815575444
8.39	. 8023567205	5.260094273	1.7258181432E-02	. 1815674266
8.40	. 8025291491	5.268118703	1.7227549585E-02	. 1815772925
8.41	. 8027012717	5.276144855	1.7197000666E-02	. 1815871423
8.42	. 8028730893	5.284172727	1.7166534370E-02	. 1815969759
8.43	. 8030446027	5.292202316	1.7136150396E-02	. 1816067933
8.44	. 8032158126	5.300233618	1.7105848441E-02	. 1816165947
8.45	. 8033867199	5.308266631	1.7075628205E-02	. 1816263801
8.46	. 8035573255	5.316301352	1.7045489390E-02	. 1816361495
8.47	. 8037276300	5.324337777	1.7015431698E-02	. 1816459029
8.48	. 8038976344	5.332375903	1.6985454833E-02	. 1816556405
8.49	. 8040673394	5.340415728	1.6955558502E-02	. 1816653622
8.50	. 8042367458	5.348457249	1.6925742410E-02	. 1816750681
8.51	. 8044058545	5.356500462	1.6896006265E-02	. 1816847583
8.52	. 8045746662	5.364545365	1.6866349778E-02	. 1816944328
8.53	. 8047431817	5.372591955	1.6836772659E-02	. 1817040916
8.54	. 8049114019	5.380640228	$1.6807274621 \mathrm{E}-02$	. 1817137347
8.55	. 8050793275	5.388690182	1.6777855376E-02	. 1817233623
8.56	. 8052469593	5.396741813	1.6748514639E-02	. 1817329744
8.57	. 8054142981	5.404795120	1.6719252128E-02	. 1817425710
8.58	. 8055813446	5.412850098	1.6690067558E-02	. 1817521521
8.59	. 8057480997	5.420906746	1.6660960650E-02	. 1817617178
8.60	. 8059145641	5.428965059	1.6631931122E-02	. 1817712682
8.61	. 8060807385	5.437025036	1.6602978697E-02	. 1817808033
8.62	. 8062466239	5.445086673	1.6574103096E-02	. 1817903230
8.63	. 8064122209	5.453149968	1.6545304044E-02	. 1817998276
8.64	. 8065775302	5.461214917	1.6516581266E-02	. 1818093169
8.65	. 8067425527	5.469281517	1.6487934488E-02	. 1818187911
8.66	. 8069072892	5.477349767	1.6459363438E-02	. 1818282502
8.67	. 8070717403	5.485419662	1.6430867844E-02	. 1818376943
8.68	. 8072359068	5.493491201	1.6402447437E-02	. 1818471233
8.69	. 8073997895	5.501564379	$1.6374101947 \mathrm{E}-02$	. 1818565373
8.70	. 8075633891	5.509639195	1.6345831108E-02	. 1818659364
8.71	. 8077267063	5.517715646	1.6317634654E-02	. 1818753206
8.72	. 8078897420	5.525793729	1.6289512318E-02	. 1818846900
8.73	. 8080524968	5.533873440	1.6261463838E-02	. 1818940445
8.74	. 8082149715	5.541954778	1.6233488950E-02	. 1819033843
8.75	. 8083771668	5.550037738	1.6205587393E-02	. 1819127093
8.76	. 8085390835	5.558122320	1.6177758907E-02	. 1819220196
8.77	. 8087007223	5.566208519	1.6150003233E-02	. 1819313153
8.78	. 8088620838	5.574296333	1.6122320112E-02	. 1819405964
8.79	. 8090231689	5.582385760	1.6094709288E-02	. 1819498629
8.80	. 8091839782	5.590476796	1.6067170506E-02	. 1819591148
8.81	. 8093445126	5.598569439	1.6039703510E-02	. 1819683523
8.82	. 8095047726	5.606663685	1.6012308047E-02	. 1819775753
8.83	. 8096647590	5.614759533	1.5984983865E-02	. 1819867839
8.84	. 8098244725	5.622856980	1.5957730714E-02	. 1819959782
8.85	. 8099839138	5.630956022	1.5930548342E-02	. 1820051580
8.86	. 8101430837	5.639056657	1.5903436502E-02	. 1820143236
8.87	. 8103019828	5.647158882	1.5876394944E-02	. 1820234750
8.88	. 8104606118	5.655262696	1.5849423424E-02	. 1820326121
8.89	. 8106189715	5.663368094	1.5822521695E-02	. 1820417350
8.90	. 8107770625	5.671475074	1.5795689512E-02	. 1820508438
8.91	. 8109348855	5.679583634	1.5768926633E-02	. 1820599385


8.92	8110924412	5.687693771	1.5742232815E-02	. 1820690191
8.93	. 8112497304	5.695805482	1.5715607816E-02	. 1820780857
8.94	. 8114067536	5.703918765	1.5689051398E-02	. 1820871383
8.95	. 8115635116	5.712033616	1.5662563319E-02	. 1820961770
8.96	. 8117200051	5.720150034	1.5636143344E-02	. 1821052017
8.97	. 8118762347	5.728268016	1.5609791234E-02	. 1821142125
8.98	. 8120322012	5.736387558	1.5583506753E-02	. 1821232096
8.99	. 8121879051	5.744508659	1.5557289667E-02	. 1821321928
9.00	. 8123433472	5.752631315	1.5531139742E-02	. 1821411622
9.01	. 8124985281	5.760755525	1.5505056745E-02	. 1821501179
9.02	. 8126534485	5.768881285	1.5479040445E-02	. 1821590599
9.03	. 8128081091	5.777008593	1.5453090609E-02	. 1821679883
9.04	. 8129625106	5.785137446	1.5427207010E-02	. 1821769030
9.05	. 8131166535	5.793267842	1.5401389417E-02	. 1821858042
9.06	8132705386	5.801399778	1.5375637604E-02	. 1821946918
9.07	. 8134241665	5.809533252	1.5349951342E-02	. 1822035659
9.08	. 8135775378	5.817668261	1.5324330408E-02	. 1822124265
9.09	. 8137306533	5.825804802	1.5298774575E-02	. 1822212736
9.10	. 8138835135	5.833942873	1.5273283620E-02	. 1822301074
9.11	. 8140361192	5.842082471	1.5247857320E-02	. 1822389278
9.12	. 8141884709	5.850223595	1.5222495454E-02	. 1822477348
9.13	. 8143405693	5.858366240	1.5197197800E-02	. 1822565286
9.14	. 8144924151	5.866510405	1.5171964138E-02	. 1822653091
9.15	. 8146440088	5.874656087	1.5146794250E-02	. 1822740764
9.16	. 8147953512	5.882803284	1.5121687917E-02	. 1822828304
9.17	. 8149464428	5.890951994	1.5096644922E-02	. 1822915713
9.18	. 8150972843	5.899102213	1.5071665050E-02	. 1823002991
9.19	. 8152478763	5.907253939	1.5046748085E-02	. 1823090138
9.20	. 8153982194	5.915407169	1.5021893812E-02	. 1823177154
9.21	. 8155483144	5.923561902	1.4997102019E-02	. 1823264040
9.22	. 8156981617	5.931718135	1.4972372492E-02	. 1823350796
9.23	. 8158477620	5.939875864	$1.4947705021 \mathrm{E}-02$	. 1823437423
9.24	. 8159971160	5.948035089	1.4923099394E-02	. 1823523920
9.25	. 8161462242	5.956195806	1.4898555403E-02	. 1823610289
9.26	. 8162950873	5.964358013	1.4874072838E-02	. 1823696528
9.27	. 8164437059	5.972521707	$1.4849651491 \mathrm{E}-02$	. 1823782640
9.28	. 8165920805	5.980686886	1.4825291155E-02	. 1823868624
9.29	. 8167402119	5.988853548	1.4800991625E-02	. 1823954480
9.30	. 8168881006	5.997021689	1.4776752695E-02	. 1824040209
9.31	. 8170357472	6.005191309	1.4752574160E-02	. 1824125811
9.32	. 8171831523	6.013362404	1.4728455817E-02	. 1824211287
9.33	. 8173303165	6.021534971	1.4704397463E-02	. 1824296636
9.34	. 8174772404	6.029709009	1.4680398898E-02	. 1824381859
9.35	. 8176239246	6.037884515	1.4656459919E-02	. 1824466957
9.36	. 8177703698	6.046061487	1.4632580326E-02	. 1824551929
9.37	. 8179165764	6.054239922	1.4608759922E-02	. 1824636777
9.38	. 8180625452	6.062419818	1.4584998506E-02	. 1824721500
9.39	. 8182082766	6.070601172	1.4561295882E-02	. 1824806098
9.40	. 8183537713	6.078783982	1.4537651854E-02	. 1824890573
9.41	8184990298	6.086968247	1.4514066224E-02	. 1824974924
9.42	. 8186440528	6.095153962	1.4490538798E-02	. 1825059151
9.43	. 8187888408	6.103341127	1.4467069383E-02	. 1825143256
9.44	. 8189333944	6.111529738	1.4443657784E-02	. 1825227237
9.45	. 8190777142	6.119719794	1.4420303809E-02	. 1825311097
9.46	. 8192218007	6.127911292	1.4397007267E-02	. 1825394834
9.47	. 8193656545	6.136104229	1.4373767966E-02	. 1825478449
9.48	. 8195092762	6.144298604	1.4350585716E-02	. 1825561943
9.49	. 8196526664	6.152494414	1.4327460328E-02	. 1825645316
9.50	. 8197958256	6.160691657	1.4304391614E-02	. 1825728567
9.51	. 8199387544	6.168890330	1.4281379385E-02	. 1825811699
9.52	. 8200814534	6.177090431	1.4258423456E-02	. 1825894710
9.53	. 8202239231	6.185291958	1.4235523639E-02	. 1825977601


9.54	. 8203661640	6.193494909	1.4212679749E-02	. 1826060372
9.55	. 8205081769	6.201699280	1.4189891602E-02	. 1826143024
9.56	. 8206499621	6.209905071	1.4167159013E-02	. 1826225557
9.57	. 8207915202	6.218112279	1.4144481801E-02	. 1826307971
9.58	. 8209328519	6.226320901	1.4121859782E-02	. 1826390266
9.59	. 8210739576	6.234530935	$1.4099292774 \mathrm{E}-02$	. 1826472444
9.60	. 8212148379	6.242742379	1.4076780598E-02	. 1826554504
9.61	. 8213554934	6.250955231	1.4054323073E-02	. 1826636446
9.62	. 8214959246	6.259169489	1.4031920020E-02	. 1826718270
9.63	. 8216361320	6.267385149	1.4009571260E-02	. 1826799978
9.64	. 8217761162	6.275602210	1.3987276616E-02	. 1826881569
9.65	. 8219158777	6.283820671	1.3965035910E-02	. 1826963044
9.66	. 8220554171	6.292040527	1.3942848966E-02	. 1827044402
9.67	. 8221947348	6.300261778	1.3920715609E-02	. 1827125645
9.68	. 8223338316	6.308484421	1.3898635663E-02	. 1827206772
9.69	. 8224727077	6.316708454	1.3876608955E-02	. 1827287784
9.70	. 8226113639	6.324933875	1.3854635311E-02	. 1827368681
9.71	. 8227498006	6.333160681	1.3832714558E-02	. 1827449463
9.72	. 8228880184	6.341388870	1.3810846524E-02	. 1827530131
9.73	. 8230260177	6.349618440	1.3789031039E-02	. 1827610684
9.74	. 8231637992	6.357849390	1.3767267931E-02	. 1827691124
9.75	. 8233013633	6.366081716	1.3745557031E-02	. 1827771450
9.76	. 8234387105	6.374315416	1.3723898169E-02	. 1827851663
9.77	. 8235758414	6.382550489	1.3702291177E-02	. 1827931763
9.78	. 8237127565	6.390786932	1.3680735887E-02	. 1828011751
9.79	. 8238494563	6.399024743	1.3659232132E-02	. 1828091625
9.80	. 8239859413	6.407263921	1.3637779745E-02	. 1828171388
9.81	. 8241222121	6.415504462	1.3616378561E-02	. 1828251039
9.82	. 8242582690	6.423746364	1.3595028415E-02	. 1828330578
9.83	. 8243941128	6.431989626	1.3573729143E-02	. 1828410005
9.84	. 8245297438	6.440234246	1.3552480580E-02	. 1828489322
9.85	. 8246651626	6.448480220	1.3531282563E-02	. 1828568528
9.86	. 8248003696	6.456727548	1.3510134931E-02	. 1828647623
9.87	. 8249353654	6.464976227	1.3489037521E-02	. 1828726608
9.88	. 8250701505	6.473226255	1.3467990172E-02	. 1828805483
9.89	. 8252047254	6.481477629	1.3446992724E-02	. 1828884249
9.90	. 8253390906	6.489730349	1.3426045017E-02	. 1828962904
9.91	. 8254732465	6.497984410	1.3405146893E-02	. 1829041451
9.92	. 8256071937	6.506239813	1.3384298191E-02	. 1829119889
9.93	. 8257409326	6.514496554	1.3363498756E-02	. 1829198218
9.94	. 8258744638	6.522754631	1.3342748428E-02	. 1829276438
9.95	. 8260077877	6.531014042	1.3322047053E-02	. 1829354551
9.96	. 8261409049	6.539274786	1.3301394473E-02	. 1829432555
9.97	. 8262738158	6.547536860	1.3280790535E-02	. 1829510452
9.98	. 8264065209	6.555800262	1.3260235082E-02	. 1829588242
9.99	. 8265390206	6.564064989	1.3239727960E-02	. 1829665924
10.00	. 8266713156	6.572331041	1.3219269018E-02	. 1829743500
10.01	. 8268034062	6.580598415	1.3198858101E-02	. 1829820969
10.02	. 8269352929	6.588867109	1.3178495057E-02	. 1829898331
10.03	. 8270669762	6.597137120	1.3158179735E-02	. 1829975588
10.04	. 8271984567	6.605408448	1.3137911984E-02	. 1830052738
10.05	. 8273297346	6.613681089	1.3117691653E-02	. 1830129783
10.06	. 8274608107	6.621955042	1.3097518593E-02	. 1830206723
10.07	. 8275916852	6.630230304	1.3077392654E-02	. 1830283558
10.08	. 8277223587	6.638506875	1.3057313688E-02	. 1830360288
10.09	. 8278528316	6.646784751	1.3037281547E-02	. 1830436913
10.10	. 8279831045	6.655063931	1.3017296083E-02	. 1830513434
10.11	. 8281131777	6.663344412	1.2997357149E-02	. 1830589851
10.12	. 8282430518	6.671626193	1.2977464600E-02	. 1830666164
10.13	. 8283727271	6.679909272	1.2957618290E-02	. 1830742373
10.14	. 8285022043	6.688193647	1.2937818074E-02	. 1830818479
10.15	. 8286314836	6.696479316	1.2918063806E-02	. 1830894482


16	. 8287605657	6.704766276	1.2898355344E-02	. 1830970383
10.17	. 8288894509	6.713054527	1.2878692543E-02	. 1831046180
10.18	. 8290181397	6.721344065	1.2859075261E-02	. 1831121875
10.19	. 8291466326	6.729634889	1.2839503356E-02	. 1831197468
10.20	. 8292749299	6.737926997	1.2819976687E-02	. 1831272959
10.21	. 8294030322	6.746220387	1.2800495111E-02	. 1831348349
10.22	. 8295309400	6.754515057	1.2781058489E-02	. 1831423637
10.23	. 8296586536	6.762811005	1.2761666680E-02	. 1831498824
10.24	. 8297861735	6.771108229	1.2742319545E-02	. 1831573910
10.25	. 8299135001	6.779406728	1.2723016945E-02	. 1831648895
10.26	. 8300406339	6.787706498	1.2703758742E-02	. 1831723780
10.27	. 8301675754	6.796007540	1.2684544798E-02	. 1831798564
10.28	. 8302943250	6.804309849	1.2665374976E-02	. 1831873249
10.29	. 8304208831	6.812613426	1.2646249139E-02	. 1831947833
10.30	. 8305472501	6.820918266	1.2627167150E-02	. 1832022319
10.31	. 8306734266	6.829224370	1.2608128875E-02	. 1832096705
10.32	. 8307994128	6.837531734	1.2589134178E-02	. 1832170991
10.33	. 8309252094	6.845840358	1.2570182924E-02	. 1832245179
10.34	. 8310508166	6.854150238	1.2551274979E-02	. 1832319269
10.35	. 8311762350	6.862461373	1.2532410210E-02	. 1832393260
10.36	. 8313014650	6.870773762	1.2513588484E-02	. 1832467153
10.37	. 8314265069	6.879087402	1.2494809668E-02	. 1832540948
10.38	. 8315513613	6.887402291	1.2476073631E-02	. 1832614645
10.39	. 8316760286	6.895718429	1.2457380240E-02	. 1832688245
10.40	. 8318005091	6.904035811	1.2438729365E-02	. 1832761747
10.41	. 8319248033	6.912354438	1.2420120875E-02	. 1832835153
10.42	. 8320489116	6.920674307	1.2401554641E-02	. 1832908462
10.43	. 8321728345	6.928995416	1.2383030532E-02	. 1832981674
10.44	. 8322965724	6.937317763	1.2364548421E-02	. 1833054790
10.45	. 8324201256	6.945641347	1.2346108178E-02	. 1833127809
10.46	. 8325434947	6.953966165	1.2327709676E-02	. 1833200733
10.47	. 8326666800	6.962292216	1.2309352787E-02	. 1833273561
10.48	. 8327896819	6.970619498	1.2291037384E-02	. 1833346294
10.49	. 8329125008	6.978948009	1.2272763341E-02	. 1833418931
10.50	. 8330351373	6.987277747	1.2254530531E-02	. 1833491473
10.51	. 8331575916	6.995608711	1.2236338830E-02	. 1833563921
10.52	. 8332798642	7.003940898	1.2218188112E-02	. 1833636274
10.53	. 8334019555	7.012274308	1.2200078253E-02	. 1833708532
10.54	. 8335238659	7.020608937	1.2182009128E-02	. 1833780696
10.55	. 8336455958	7.028944784	1.2163980614E-02	. 1833852767
10.56	. 8337671456	7.037281848	1.2145992588E-02	. 1833924743
10.57	. 8338885158	7.045620127	1.2128044927E-02	. 1833996626
10.58	. 8340097067	7.053959618	1.2110137509E-02	. 1834068416
10.59	. 8341307187	7.062300320	1.2092270213E-02	. 1834140113
10.60	. 8342515522	7.070642232	1.2074442917E-02	. 1834211716
10.61	. 8343722077	7.078985351	1.2056655500E-02	. 1834283227
10.62	. 8344926855	7.087329675	1.2038907842E-02	. 1834354646
10.63	. 8346129860	7.095675204	1.2021199823E-02	. 1834425972
10.64	. 8347331096	7.104021934	1.2003531325E-02	. 1834497207
10.65	. 8348530567	7.112369865	1.1985902227E-02	. 1834568349
10.66	. 8349728278	7.120718995	1.1968312411E-02	. 1834639400
10.67	. 8350924231	7.129069321	1.1950761760E-02	. 1834710359
10.68	. 8352118431	7.137420843	1.1933250155E-02	. 1834781227
10.69	. 8353310882	7.145773558	1.1915777480E-02	. 1834852004
10.70	. 8354501588	7.154127464	1.1898343618E-02	. 1834922690
10.71	. 8355690552	7.162482560	1.1880948453E-02	. 1834993286
10.72	. 8356877779	7.170838845	1.1863591868E-02	. 1835063791
10.73	. 8358063272	7.179196315	1.1846273749E-02	. 1835134206
10.74	. 8359247035	7.187554971	1.1828993980E-02	. 1835204531
10.75	. 8360429072	7.195914809	1.1811752448E-02	. 1835274766
10.76	. 8361609387	7.204275828	1.1794549037E-02	. 1835344911
10.77	. 8362787983	7.212638027	1.1777383634E-02	. 1835414967


78	. 8363964865	7.221001403	1.1760256126E-02	. 1835484934
10.79	. 8365140036	7.229365956	1.1743166401E-02	. 1835554812
10.80	. 8366313499	7.237731683	1.1726114346E-02	. 1835624601
10.81	. 8367485260	7.246098582	1.1709099848E-02	. 1835694301
10.82	. 8368655321	7.254466653	1.1692122797E-02	. 1835763913
10.83	. 8369823685	7.262835893	1.1675183081E-02	. 1835833437
10.84	. 8370990358	7.271206300	1.1658280590E-02	. 1835902873
10.85	. 8372155343	7.279577873	1.1641415213E-02	. 1835972220
10.86	. 8373318643	7.287950610	1.1624586840E-02	. 1836041481
10.87	. 8374480261	7.296324509	1.1607795363E-02	. 1836110653
10.88	. 8375640203	7.304699570	1.1591040671E-02	. 1836179739
10.89	. 8376798471	7.313075789	1.1574322657E-02	. 1836248737
10.90	. 8377955069	7.321453166	1.1557641211E-02	. 1836317649
10.91	. 8379110000	7.329831699	1.1540996228E-02	. 1836386474
10.92	. 8380263269	7.338211386	1.1524387597E-02	. 1836455212
10.93	. 8381414879	7.346592225	1.1507815214E-02	. 1836523864
10.94	. 8382564833	7.354974215	1.1491278971E-02	. 1836592430
10.95	. 8383713136	7.363357354	1.1474778762E-02	. 1836660910
10.96	. 8384859790	7.371741641	1.1458314481E-02	. 1836729304
10.97	. 8386004800	7.380127073	1.1441886022E-02	. 1836797613
10.98	. 8387148169	7.388513650	1.1425493281E-02	. 1836865836
10.99	. 8388289900	7.396901369	1.1409136154E-02	. 1836933974
11.00	. 8389429997	7.405290229	1.1392814534E-02	. 1837002027
11.01	. 8390568464	7.413680228	1.1376528320E-02	. 1837069996
11.02	. 8391705304	7.422071365	1.1360277407E-02	. 1837137879
11.03	. 8392840521	7.430463638	1.1344061692E-02	. 1837205679
11.04	. 8393974118	7.438857046	1.1327881072E-02	. 1837273394
11.05	. 8395106098	7.447251586	1.1311735446E-02	. 1837341025
11.06	. 8396236466	7.455647257	1.1295624710E-02	. 1837408572
11.07	. 8397365224	7.464044058	1.1279548764E-02	. 1837476035
11.08	. 8398492377	7.472441987	1.1263507506E-02	. 1837543415
11.09	. 8399617927	7.480841043	1.1247500836E-02	. 1837610711
11.10	. 8400741878	7.489241223	1.1231528652E-02	. 1837677925
11.11	. 8401864234	7.497642526	1.1215590855E-02	. 1837745055
11.12	. 8402984997	7.506044951	1.1199687345E-02	. 1837812102
11.13	. 8404104172	7.514448495	1.1183818022E-02	. 1837879067
11.14	. 8405221762	7.522853158	1.1167982788E-02	. 1837945950
11.15	. 8406337770	7.531258938	$1.1152181544 \mathrm{E}-02$	. 1838012750
11.16	. 8407452199	7.539665833	1.1136414191E-02	. 1838079468
11.17	. 8408565054	7.548073842	1.1120680632E-02	. 1838146104
11.18	. 8409676337	7.556482963	1.1104980769E-02	. 1838212658
11.19	. 8410786051	7.564893194	1.1089314505E-02	. 1838279131
11.20	. 8411894201	7.573304535	1.1073681743E-02	. 1838345522
11.21	. 8413000789	7.581716982	1.1058082386E-02	. 1838411833
11.22	. 8414105818	7.590130536	1.1042516338E-02	. 1838478062
11.23	. 8415209293	7.598545193	1.1026983503E-02	. 1838544210
11.24	. 8416311216	7.606960954	1.1011483787E-02	. 1838610277
11.25	. 8417411591	7.615377815	1.0996017093E-02	. 1838676264
11.26	. 8418510421	7.623795776	1.0980583327E-02	. 1838742171
11.27	. 8419607709	7.632214836	1.0965182395E-02	. 1838807998
11.28	. 8420703458	7.640634991	1.0949814202E-02	. 1838873744
11.29	. 8421797673	7.649056242	$1.0934478654 \mathrm{E}-02$	. 1838939411
11.30	. 8422890355	7.657478586	1.0919175659E-02	. 1839004997
11.31	. 8423981509	7.665902022	1.0903905123E-02	. 1839070505
11.32	. 8425071137	7.674326549	$1.0888666954 \mathrm{E}-02$	. 1839135933
11.33	. 8426159243	7.682752164	1.0873461058E-02	. 1839201282
11.34	. 8427245830	7.691178867	1.0858287344E-02	. 1839266552
11.35	. 8428330902	7.699606655	$1.0843145721 \mathrm{E}-02$	. 1839331743
11.36	. 8429414461	7.708035528	1.0828036096E-02	. 1839396855
11.37	. 8430496510	7.716465484	1.0812958379E-02	. 1839461889
11.38	. 8431577053	7.724896520	1.0797912479E-02	. 1839526844
11.39	. 8432656094	7.733328637	1.0782898305E-02	. 1839591722


11.40	8433733634	7.741761832	1.0767915767E-02	1839656521
11.41	. 8434809678	7.750196104	$1.0752964776 \mathrm{E}-02$	. 1839721243
11.42	. 8435884228	7.758631451	1.0738045243E-02	. 1839785886
11.43	. 8436957288	7.767067872	1.0723157077E-02	1839850453
11.44	. 8438028861	7.775505365	1.0708300190E-02	1839914942
11.45	. 8439098949	7.783943929	$1.0693474494 E-02$	. 1839979353
11.46	. 8440167556	7.792383562	1.0678679900E-02	1840043688
11.47	. 8441234686	7.800824264	1.0663916321E-02	. 1840107946
11.48	. 8442300341	7.809266031	1.0649183668E-02	. 1840172127
11.49	. 8443364524	7.817708864	1.0634481856E-02	1840236231
11.50	. 8444427238	7.826152760	1.0619810796E-02	. 1840300259
11.51	. 8445488487	7.834597718	1.0605170402E-02	1840364211
11.52	. 8446548273	7.843043736	1.0590560588E-02	. 1840428087
11.53	. 8447606600	7.851490814	1.0575981268E-02	. 1840491887
11.54	. 8448663471	7.859938949	1.0561432356E-02	1840555611
11.55	. 8449718888	7.868388140	1.0546913767E-02	1840619260
11.56	. 8450772854	7.876838386	1.0532425415E-02	1840682833
11.57	. 8451825374	7.885289686	1.0517967216E-02	. 1840746330
11.58	. 8452876449	7.893742037	1.0503539085E-02	. 1840809753
11.59	. 8453926083	7.902195438	1.0489140938E-02	1840873101
11.60	. 8454974278	7.910649888	1.0474772691E-02	1840936374
11.61	. 8456021038	7.919105386	1.0460434261E-02	. 1840999572
11.62	. 8457066366	7.927561930	1.0446125564E-02	1841062695
11.63	. 8458110264	7.936019518	$1.0431846518 \mathrm{E}-02$	. 1841125745
11.64	. 8459152736	7.944478150	1.0417597039E-02	. 1841188720
11.65	. 8460193785	7.952937823	$1.0403377044 \mathrm{E}-02$	. 1841251621
11.66	. 8461233412	7.961398537	1.0389186453E-02	. 1841314448
11.67	. 8462271623	7.969860290	$1.0375025183 \mathrm{E}-02$	. 1841377201
11.68	. 8463308418	7.978323080	1.0360893152E-02	. 1841439881
11.69	. 8464343802	7.986786906	1.0346790279E-02	. 1841502487
11.70	. 8465377777	7.995251767	$1.0332716483 \mathrm{E}-02$	. 1841565020
11.71	. 8466410347	8.003717661	1.0318671684E-02	. 1841627480
11.72	. 8467441513	8.012184587	$1.0304655801 \mathrm{E}-02$	. 1841689867
11.73	. 8468471279	8.020652544	1.0290668754E-02	1841752181
11.74	. 8469499648	8.029121529	1.0276710463E-02	. 1841814422
11.75	. 8470526622	8.037591543	$1.0262780848 \mathrm{E}-02$	. 1841876591
11.76	. 8471552205	8.046062582	1.0248879830E-02	1841938687
11.77	. 8472576399	8.054534647	$1.0235007330 \mathrm{E}-02$	. 1842000711
11.78	. 8473599207	8.063007734	1.0221163270E-02	. 1842062663
11.79	. 8474620632	8.071481844	1.0207347570E-02	. 1842124543
11.80	. 8475640677	8.079956975	1.0193560153E-02	. 1842186351
11.81	. 8476659345	8.088433125	1.0179800941E-02	1842248088
11.82	. 8477676639	8.096910293	1.0166069855E-02	1842309753
11.83	. 8478692560	8.105388478	1.0152366819E-02	. 1842371347
11.84	. 8479707113	8.113867678	1.0138691756E-02	. 1842432869
11.85	. 8480720300	8.122347892	1.0125044588E-02	. 1842494320
11.86	. 8481732123	8.130829118	1.0111425239E-02	. 1842555700
11.87	. 8482742585	8.139311356	$1.0097833633 E-02$	1842617010
11.88	. 8483751690	8.147794603	1.0084269693E-02	1842678249
11.89	. 8484759440	8.156278859	$1.0070733344 E-02$	. 1842739417
11.90	. 8485765838	8.164764121	1.0057224510E-02	. 1842800515
11.91	. 8486770886	8.173250390	$1.0043743117 \mathrm{E}-02$	. 1842861543
11.92	. 8487774588	8.181737663	1.0030289088E-02	. 1842922500
11.93	. 8488776945	8.190225939	1.0016862349E-02	. 1842983388
11.94	. 8489777961	8.198715216	1.0003462826E-02	. 1843044206
11.95	. 8490777638	8.207205494	9.9900904445E-03	. 1843104954
11.96	. 8491775980	8.215696771	9.9767451303E-03	. 1843165632
11.97	. 8492772988	8.224189046	9.9634268098E-03	. 1843226241
11.98	. 8493768666	8.232682317	9.9501354094E-03	. 1843286781
11.99	. 8494763016	8.241176583	9.9368708560E-03	. 1843347252
12.00	. 8495756041	8.249671842	9.9236330766E-03	. 1843407654
12.01	. 8496747744	8.258168094	9.9104219984E-03	. 1843467987


12.02	. 8497738127	8.266665337	9.8972375490E-03	1
12.03	. 8498727192	8.275163570	9.8840796561E-03	. 1843588447
12.04	. 8499714943	8.283662791	9.8709482478E-03	1843648574
12.05	. 8500701383	8.292162999	9.8578432522E-03	. 1843708633
12.06	. 8501686513	8.300664193	9.8447645980E-03	. 1843768624
12.07	. 8502670336	8.309166372	9.8317122138E-03	1843828547
12.08	. 8503652856	8.317669534	9.8186860286E-03	. 1843888401
12.09	. 8504634075	8.326173677	9.8056859718E-03	1843948188
12.10	. 8505613994	8.334678801	9.7927119726E-03	1844007908
12.11	. 8506592618	8.343184905	9.7797639610E-03	. 1844067560
12.12	. 8507569948	8.351691986	$9.7668418668 \mathrm{E}-03$	. 1844127145
12.13	. 8508545987	8.360200044	9.7539456201E-03	. 1844186662
12.14	. 8509520738	8.368709078	9.7410751516E-03	. 1844246112
12.15	. 8510494203	8.377219085	9.7282303917E-03	. 1844305496
12.16	. 8511466385	8.385730066	9.7154112715E-03	. 1844364812
12.17	. 8512437286	8.394242018	9.7026177220E-03	. 1844424062
12.18	. 8513406909	8.402754940	9.6898496746E-03	1844483245
12.19	. 8514375257	8.411268831	9.6771070610E-03	. 1844542362
12.20	. 8515342331	8.419783690	9.6643898128E-03	. 1844601413
12.21	. 8516308136	8.428299515	9.6516978623E-03	. 1844660397
12.22	. 8517272672	8.436816306	9.6390311417E-03	. 1844719315
12.23	. 8518235943	8.445334060	9.6263895836E-03	. 1844778168
12.24	. 8519197951	8.453852777	9.6137731206E-03	1844836954
12.25	. 8520158698	8.462372456	9.6011816857E-03	. 1844895675
12.26	. 8521118188	8.470893094	9.5886152122E-03	. 1844954330
12.27	. 8522076422	8.479414692	9.5760736335E-03	. 1845012920
12.28	. 8523033403	8.487937247	9.5635568832E-03	. 1845071445
12.29	. 8523989134	8.496460758	9.5510648952E-03	. 1845129905
12.30	. 8524943617	8.504985225	9.5385976036E-03	. 1845188299
12.31	. 8525896855	8.513510645	9.5261549427E-03	. 1845246629
12.32	. 8526848849	8.522037018	9.5137368471E-03	. 1845304894
12.33	. 8527799603	8.530564342	9.5013432514E-03	. 1845363094
12.34	. 8528749118	8.539092617	9.4889740907E-03	. 1845421230
12.35	. 8529697398	8.547621840	9.4766293002E-03	. 1845479301
12.36	. 8530644445	8.556152011	9.4643088153E-03	. 1845537308
12.37	. 8531590261	8.564683128	9.4520125716E-03	. 1845595251
12.38	. 8532534848	8.573215191	9.4397405049E-03	. 1845653130
12.39	. 8533478210	8.581748198	9.4274925513E-03	. 1845710945
12.40	. 8534420348	8.590282147	9.4152686470E-03	. 1845768697
12.41	. 8535361264	8.598817038	9.4030687286E-03	. 1845826384
12.42	. 8536300962	8.607352869	$9.3908927327 \mathrm{E}-03$	. 1845884008
12.43	. 8537239444	8.615889640	9.3787405963E-03	1845941569
12.44	. 8538176711	8.624427348	9.3666122564E-03	. 1845999066
12.45	. 8539112767	8.632965993	9.3545076504E-03	. 1846056501
12.46	. 8540047613	8.641505573	9.3424267157E-03	1846113872
12.47	. 8540981253	8.650046087	9.3303693902E-03	1846171180
12.48	. 8541913688	8.658587535	9.3183356118E-03	. 1846228426
12.49	. 8542844921	8.667129914	9.3063253186E-03	. 1846285608
12.50	. 8543774954	8.675673224	9.2943384489E-03	. 1846342729
12.51	. 8544703789	8.684217464	9.2823749414E-03	1846399787
12.52	. 8545631430	8.692762632	9.2704347348E-03	. 1846456782
12.53	. 8546557877	8.701308726	9.2585177680E-03	. 1846513715
12.54	. 8547483134	8.709855747	9.2466239802E-03	. 1846570587
12.55	. 8548407203	8.718403692	9.2347533109E-03	. 1846627396
12.56	. 8549330086	8.726952561	9.2229056994E-03	. 1846684143
12.57	. 8550251785	8.735502352	9.2110810857E-03	. 1846740829
12.58	. 8551172303	8.744053064	9.1992794096E-03	. 1846797453
12.59	. 8552091641	8.752604696	9.1875006114E-03	. 1846854016
12.60	. 8553009803	8.761157247	9.1757446314E-03	. 1846910517
12.61	. 8553926791	8.769710715	9.1640114101E-03	. 1846966957
12.62	. 8554842606	8.778265100	9.1523008883E-03	. 1847023336
12.63	. 8555757252	8.786820400	9.1406130069E-03	. 1847079654


12.64	. 8556670730	8.795376614	9.1289477071E-03	. 1847135911
12.65	. 8557583042	8.803933741	9.1173049302E-03	. 1847192107
12.66	. 8558494192	8.812491780	9.1056846178E-03	. 1847248242
12.67	. 8559404180	8.821050729	9.0940867114E-03	. 1847304317
12.68	. 8560313010	8.829610588	9.0825111531E-03	. 1847360331
12.69	. 8561220683	8.838171355	9.0709578849E-03	. 1847416286
12.70	. 8562127202	8.846733029	9.0594268492E-03	. 1847472179
12.71	. 8563032569	8.855295609	9.0479179883E-03	. 1847528013
12.72	. 8563936786	8.863859094	9.0364312450E-03	. 1847583787
12.73	. 8564839856	8.872423482	9.0249665620E-03	. 1847639501
12.74	. 8565741780	8.880988773	9.0135238825E-03	. 1847695155
12.75	. 8566642561	8.889554965	9.0021031496E-03	. 1847750749
12.76	. 8567542202	8.898122058	8.9907043067E-03	. 1847806284
12.77	. 8568440703	8.906690049	8.9793272975E-03	. 1847861760
12.78	. 8569338068	8.915258939	8.9679720656E-03	. 1847917176
12.79	. 8570234298	8.923828725	8.9566385551E-03	. 1847972533
12.80	. 8571129396	8.932399407	8.9453267101E-03	. 1848027831
12.81	. 8572023364	8.940970984	8.9340364748E-03	. 1848083070
12.82	. 8572916204	8.949543453	8.9227677939E-03	. 1848138250
12.83	. 8573807919	8.958116816	8.9115206119E-03	. 1848193371
12.84	. 8574698509	8.966691069	8.9002948737E-03	. 1848248433
12.85	. 8575587978	8.975266212	8.8890905244E-03	. 1848303437
12.86	. 8576476328	8.983842244	8.8779075091E-03	. 1848358383
12.87	. 8577363560	8.992419165	8.8667457732E-03	. 1848413270
12.88	. 8578249678	9.000996971	8.8556052624E-03	. 1848468099
12.89	. 8579134682	9.009575664	8.8444859223E-03	. 1848522870
12.90	. 8580018576	9.018155240	8.8333876989E-03	. 1848577583
12.91	. 8580901360	9.026735700	8.8223105382E-03	. 1848632238
12.92	. 8581783039	9.035317043	8.8112543865E-03	. 1848686835
12.93	. 8582663612	9.043899266	8.8002191902E-03	. 1848741375
12.94	. 8583543083	9.052482369	8.7892048960E-03	. 1848795857
12.95	. 8584421454	9.061066352	8.7782114505E-03	. 1848850281
12.96	. 8585298726	9.069651212	8.7672388009E-03	. 1848904648
12.97	. 8586174902	9.078236949	8.7562868941E-03	. 1848958958
12.98	. 8587049984	9.086823561	8.7453556775E-03	. 1849013210
12.99	. 8587923974	9.095411048	8.7344450985E-03	. 1849067406
13.00	. 8588796874	9.103999409	8.7235551048E-03	. 1849121545
13.01	. 8589668686	9.112588642	8.7126856441E-03	. 1849175626
13.02	. 8590539412	9.121178746	8.7018366644E-03	. 1849229652
13.03	. 8591409054	9.129769720	8.6910081139E-03	. 1849283620
13.04	. 8592277614	9.138361564	8.6801999407E-03	. 1849337532
13.05	. 8593145094	9.146954275	8.6694120934E-03	. 1849391387
13.06	. 8594011497	9.155547854	8.6586445206E-03	. 1849445187
13.07	. 8594876824	9.164142298	8.6478971711E-03	. 1849498929
13.08	. 8595741077	9.172737607	8.6371699938E-03	. 1849552616
13.09	. 8596604259	9.181333780	8.6264629378E-03	. 1849606247
13.10	. 8597466370	9.189930815	8.6157759524E-03	. 1849659822
13.11	. 8598327414	9.198528712	8.6051089870E-03	. 1849713341
13.12	. 8599187393	9.207127470	8.5944619913E-03	. 1849766804
13.13	. 8600046308	9.215727086	8.5838349149E-03	. 1849820212
13.14	. 8600904160	9.224327562	8.5732277078E-03	. 1849873564
13.15	. 8601760954	9.232928894	8.5626403200E-03	. 1849926861
13.16	. 8602616689	9.241531083	8.5520727019E-03	. 1849980103
13.17	. 8603471369	9.250134127	8.5415248037E-03	. 1850033289
13.18	. 8604324995	9.258738026	8.5309965760E-03	. 1850086420
13.19	. 8605177569	9.267342777	8.5204879695E-03	. 1850139497
13.20	. 8606029093	9.275948381	8.5099989350E-03	. 1850192518
13.21	. 8606879569	9.284554835	8.4995294237E-03	. 1850245485
13.22	. 8607729000	9.293162139	8.4890793866E-03	. 1850298396
13.23	. 8608577386	9.301770293	8.4786487750E-03	. 1850351254
13.24	. 8609424730	9.310379294	8.4682375404E-03	. 1850404056
13.25	. 8610271034	9.318989142	8.4578456345E-03	1850456


26	8611116300	9.327599835	8.4474730090E-03	1850509499
13.27	. 8611960529	9.336211374	8.4371196158E-03	1850562139
13.28	. 8612803724	9.344823756	8.4267854071E-03	1850614724
13.29	. 8613645887	9.353436981	8.4164703351E-03	. 1850667256
13.30	. 8614487019	9.362051048	8.4061743520E-03	. 1850719734
13.31	. 8615327122	9.370665955	8.3958974106E-03	1850772158
13.32	. 8616166199	9.379281701	8.3856394633E-03	1850824528
13.33	. 8617004251	9.387898287	8.3754004632E-03	1850876844
13.34	8617841280	9.396515710	8.3651803630E-03	1850929107
13.35	. 8618677288	9.405133969	8.3549791161E-03	. 1850981317
13.36	. 8619512276	9.413753064	8.3447966755E-03	. 1851033473
13.37	. 8620346248	9.422372993	8.3346329948E-03	1851085576
13.38	. 8621179204	9.430993756	8.3244880275E-03	. 1851137626
13.39	. 8622011146	9.439615351	8.3143617273E-03	. 1851189623
13.40	. 8622842077	9.448237778	8.3042540480E-03	1851241567
13.41	. 8623671997	9.456861035	8.2941649436E-03	. 1851293458
13.42	. 8624500910	9.465485122	8.2840943683E-03	1851345296
13.43	. 8625328817	9.474110037	8.2740422764E-03	. 1851397081
13.44	. 8626155719	9.482735779	8.2640086222E-03	. 1851448814
13.45	. 8626981619	9.491362348	8.2539933603E-03	1851500495
13.46	. 8627806518	9.499989742	8.2439964454E-03	. 1851552123
13.47	. 8628630419	9.508617960	8.2340178324E-03	1851603698
13.48	. 8629453323	9.517247002	8.2240574763E-03	1851655222
13.49	. 8630275231	9.525876867	8.2141153321E-03	. 1851706693
13.50	. 8631096146	9.534507553	8.2041913551E-03	. 1851758113
13.51	. 8631916070	9.543139059	8.1942855007E-03	1851809480
13.52	. 8632735004	9.551771384	8.1843977245E-03	. 1851860796
13.53	. 8633552950	9.560404528	8.1745279822E-03	1851912060
13.54	8634369910	9.569038490	8.1646762294E-03	1851963272
13.55	. 8635185886	9.577673268	8.1548424223E-03	. 1852014432
13.56	. 8636000879	9.586308861	8.1450265168E-03	1852065542
13.57	. 8636814892	9.594945269	8.1352284692E-03	. 1852116599
13.58	. 8637627926	9.603582491	8.1254482359E-03	. 1852167606
13.59	. 8638439982	9.612220525	8.1156857733E-03	1852218561
13.60	. 8639251063	9.620859370	8.1059410380E-03	. 1852269465
13.61	. 8640061171	9.629499027	8.0962139868E-03	. 1852320318
13.62	. 8640870307	9.638139492	8.0865045767E-03	1852371120
13.63	. 8641678472	9.646780767	8.0768127645E-03	. 1852421872
13.64	. 8642485670	9.655422849	8.0671385075E-03	. 1852472572
13.65	. 8643291901	9.664065738	8.0574817629E-03	. 1852523222
13.66	. 8644097167	9.672709433	8.0478424882E-03	. 1852573821
13.67	. 8644901470	9.681353932	8.0382206409E-03	1852624370
13.68	. 8645704812	9.689999235	8.0286161787E-03	1852674869
13.69	. 8646507194	9.698645341	8.0190290594E-03	. 1852725317
13.70	8647308618	9.707292249	8.0094592408E-03	1852775714
13.71	. 8648109086	9.715939958	7.9999066812E-03	1852826062
13.72	. 8648908600	9.724588467	$7.9903713386 \mathrm{E}-03$	. 1852876360
13.73	. 8649707161	9.733237775	7.9808531713E-03	. 1852926608
13.74	. 8650504771	9.741887881	$7.9713521380 \mathrm{E}-03$	. 1852976805
13.75	. 8651301432	9.750538784	$7.9618681970 \mathrm{E}-03$	1853026953
13.76	. 8652097145	9.759190484	7.9524013070E-03	1853077052
13.77	. 8652891913	9.767842978	$7.9429514270 \mathrm{E}-03$	. 1853127100
13.78	. 8653685736	9.776496267	7.9335185159E-03	. 1853177099
13.79	. 8654478617	9.785150349	$7.9241025327 \mathrm{E}-03$	. 1853227049
13.80	. 8655270557	9.793805224	7.9147034366E-03	. 1853276950
13.81	. 8656061558	9.802460890	$7.9053211870 \mathrm{E}-03$	. 1853326801
13.82	. 8656851622	9.811117347	$7.8959557432 \mathrm{E}-03$	. 1853376602
13.83	. 8657640750	9.819774593	7.8866070649E-03	. 1853426355
13.84	. 8658428944	9.828432628	$7.8772751118 \mathrm{E}-03$	. 1853476059
13.85	. 8659216206	9.837091451	7.8679598436E-03	. 1853525714
13.86	. 8660002536	9.845751060	7.8586612203E-03	. 1853575320
13.87	. 8660787938	9.854411455	7.8493792020E-03	. 1853624877


88	. 8661572413	9.863072636	7.8401137488E-03	5
13.89	. 8662355962	9.871734600	7.8308648209E-03	. 1853723845
13.90	. 8663138586	9.880397347	7.8216323790E-03	1853773257
13.91	. 8663920289	9.889060877	7.8124163833E-03	. 1853822620
13.92	. 8664701070	9.897725188	7.8032167947E-03	. 1853871934
13.93	. 8665480933	9.906390279	$7.7940335739 \mathrm{E}-03$	1853921201
13.94	. 8666259877	9.915056149	$7.7848666818 \mathrm{E}-03$	. 1853970419
13.95	. 8667037906	9.923722798	7.7757160793E-03	1854019589
13.96	. 8667815021	9.932390225	7.7665817277E-03	1854068711
13.97	. 8668591223	9.941058428	$7.7574635881 \mathrm{E}-03$	. 1854117785
13.98	. 8669366514	9.949727407	7.7483616219E-03	. 1854166811
13.99	. 8670140896	9.958397161	7.7392757906E-03	. 1854215790
14.00	. 8670914370	9.967067688	$7.7302060557 \mathrm{E}-03$	. 1854264720
14.01	. 8671686938	9.975738989	7.7211523790E-03	. 1854313603
14.02	. 8672458601	9.984411062	7.7121147224E-03	. 1854362439
14.03	. 8673229361	9.993083906	7.7030930476E-03	. 1854411227
14.04	. 8673999220	10.00175752	7.6940873168E-03	1854459968
14.05	. 8674768179	10.01043190	7.6850974922E-03	. 1854508662
14.06	. 8675536240	10.01910706	7.6761235360E-03	. 1854557308
14.07	. 8676303405	10.02778298	7.6671654105E-03	. 1854605907
14.08	. 8677069674	10.03645966	7.6582230784E-03	. 1854654459
14.09	. 8677835050	10.04513712	7.6492965021E-03	. 1854702964
14.10	. 8678599534	10.05381533	7.6403856445E-03	. 1854751423
14.11	. 8679363127	10.06249431	7.6314904683E-03	. 1854799834
14.12	. 8680125832	10.07117406	7.6226109366E-03	. 1854848199
14.13	. 8680887650	10.07985457	7.6137470123E-03	. 1854896517
14.14	. 8681648582	10.08853583	7.6048986586E-03	. 1854944788
14.15	. 8682408630	10.09721786	7.5960658388E-03	. 1854993013
14.16	. 8683167796	10.10590065	7.5872485162E-03	. 1855041192
14.17	. 8683926081	10.11458420	7.5784466545E-03	. 1855089324
14.18	. 8684683486	10.12326850	7.5696602171E-03	. 1855137410
14.19	. 8685440013	10.13195356	7.5608891677E-03	. 1855185450
14.20	. 8686195664	10.14063938	7.5521334703E-03	. 1855233444
14.21	. 8686950440	10.14932596	7.5433930886E-03	. 1855281392
14.22	. 8687704343	10.15801328	7.5346679868E-03	. 1855329293
14.23	. 8688457374	10.16670136	7.5259581290E-03	. 1855377149
14.24	. 8689209535	10.17539020	7.5172634793E-03	. 1855424959
14.25	. 8689960828	10.18407978	7.5085840022E-03	. 1855472724
14.26	. 8690711253	10.19277012	7.4999196621E-03	. 1855520442
14.27	. 8691460812	10.20146120	7.4912704236E-03	. 1855568116
14.28	. 8692209507	10.21015304	7.4826362513E-03	. 1855615743
14.29	. 8692957340	10.21884562	7.4740171100E-03	. 1855663326
14.30	. 8693704311	10.22753895	7.4654129645E-03	. 1855710863
14.31	. 8694450423	10.23623303	7.4568237799E-03	. 1855758354
14.32	. 8695195676	10.24492785	7.4482495211E-03	1855805801
14.33	. 8695940073	10.25362342	7.4396901535E-03	1855853202
14.34	. 8696683615	10.26231973	7.4311456422E-03	. 1855900558
14.35	. 8697426303	10.27101679	7.4226159526E-03	. 1855947870
14.36	. 8698168139	10.27971459	7.4141010503E-03	. 1855995136
14.37	. 8698909124	10.28841313	7.4056009007E-03	1856042358
14.38	. 8699649259	10.29711241	7.3971154697E-03	. 1856089535
14.39	. 8700388547	10.30581242	7.3886447229E-03	. 1856136667
14.40	. 8701126989	10.31451318	7.3801886263E-03	. 1856183755
14.41	. 8701864585	10.32321468	7.3717471458E-03	. 1856230798
14.42	. 8702601339	10.33191691	7.3633202475E-03	. 1856277797
14.43	. 8703337250	10.34061988	7.3549078977E-03	. 1856324752
14.44	. 8704072321	10.34932358	7.3465100626E-03	. 1856371662
14.45	. 8704806552	10.35802802	7.3381267085E-03	. 1856418528
14.46	. 8705539947	10.36673320	7.3297578020E-03	. 1856465349
14.47	. 8706272505	10.37543910	7.3214033096E-03	. 1856512127
14.48	. 8707004228	10.38414574	7.3130631981E-03	. 1856558861
14.49	. 8707735118	10.39285311	7.3047374341E-03	. 1856605550


14.50	. 8708465176	10.40156121	7.2964259845E-03	6
14.51	. 8709194403	10.41027004	7.2881288164E-03	. 1856698798
14.52	. 8709922802	10.41897960	7.2798458967E-03	1856745357
14.53	. 8710650373	10.42768989	7.2715771927E-03	. 1856791872
14.54	. 8711377118	10.43640090	7.2633226715E-03	. 1856838343
14.55	. 8712103038	10.44511264	7.2550823005E-03	1856884771
14.56	. 8712828135	10.45382511	7.2468560472E-03	. 1856931155
14.57	. 8713552410	10.46253830	7.2386438791E-03	1856977496
14.58	. 8714275864	10.47125221	7.2304457637E-03	1857023793
14.59	. 8714998499	10.47996685	7.2222616690E-03	. 1857070048
14.60	. 8715720317	10.48868221	7.2140915626E-03	. 1857116259
14.61	. 8716441318	10.49739829	7.2059354124E-03	. 1857162427
14.62	. 8717161504	10.50611509	7.1977931865E-03	. 1857208553
14.63	. 8717880877	10.51483261	7.1896648530E-03	. 1857254635
14.64	. 8718599438	10.52355085	7.1815503800E-03	. 1857300674
14.65	. 8719317188	10.53226981	7.1734497358E-03	. 1857346671
14.66	. 8720034128	10.54098949	7.1653628888E-03	1857392625
14.67	. 8720750261	10.54970988	7.1572898075E-03	. 1857438536
14.68	. 8721465587	10.55843099	7.1492304603E-03	. 1857484405
14.69	. 8722180107	10.56715281	7.1411848160E-03	. 1857530231
14.70	. 8722893824	10.57587535	7.1331528433E-03	. 1857576015
14.71	. 8723606738	10.58459860	7.1251345109E-03	. 1857621756
14.72	. 8724318851	10.59332256	7.1171297878E-03	1857667455
14.73	. 8725030165	10.60204723	7.1091386430E-03	. 1857713112
14.74	. 8725740680	10.61077262	7.1011610456E-03	. 1857758727
14.75	. 8726450397	10.61949872	7.0931969648E-03	. 1857804300
14.76	. 8727159319	10.62822552	7.0852463698E-03	. 1857849830
14.77	. 8727867447	10.63695303	7.0773092299E-03	. 1857895319
14.78	. 8728574782	10.64568126	7.0693855147E-03	. 1857940765
14.79	. 8729281325	10.65441018	7.0614751936E-03	. 1857986170
14.80	. 8729987077	10.66313982	7.0535782362E-03	. 1858031533
14.81	. 8730692041	10.67187016	7.0456946123E-03	. 1858076855
14.82	. 8731396217	10.68060120	7.0378242916E-03	. 1858122135
14.83	. 8732099606	10.68933295	7.0299672441E-03	. 1858167373
14.84	. 8732802210	10.69806540	7.0221234396E-03	. 1858212570
14.85	. 8733504031	10.70679855	7.0142928483E-03	. 1858257725
14.86	. 8734205069	10.71553241	7.0064754402E-03	. 1858302839
14.87	. 8734905327	10.72426696	6.9986711855E-03	. 1858347911
14.88	. 8735604804	10.73300222	$6.9908800547 \mathrm{E}-03$	. 1858392943
14.89	. 8736303503	10.74173817	$6.9831020179 \mathrm{E}-03$	. 1858437933
14.90	. 8737001425	10.75047483	6.9753370458E-03	. 1858482882
14.91	. 8737698571	10.75921218	6.9675851089E-03	1858527791
14.92	. 8738394942	10.76795022	6.9598461778E-03	. 1858572658
14.93	. 8739090541	10.77668896	6.9521202231E-03	. 1858617484
14.94	. 8739785367	10.78542840	6.9444072158E-03	1858662270
14.95	. 8740479423	10.79416854	6.9367071268E-03	1858707014
14.96	. 8741172709	10.80290936	6.9290199268E-03	. 1858751718
14.97	. 8741865227	10.81165088	$6.9213455872 \mathrm{E}-03$	. 1858796382
14.98	. 8742556978	10.82039309	6.9136840788E-03	. 1858841004
14.99	. 8743247964	10.82913599	6.9060353730E-03	1858885587
15.00	. 8743938186	10.83787959	6.8983994411E-03	. 1858930129
15.01	. 8744627644	10.84662387	6.8907762545E-03	. 1858974630
15.02	. 8745316341	10.85536884	6.8831657845E-03	. 1859019091
15.03	. 8746004278	10.86411450	6.8755680027E-03	. 1859063512
15.04	. 8746691456	10.87286085	6.8679828808E-03	. 1859107893
15.05	. 8747377875	10.88160789	6.8604103904E-03	. 1859152233
15.06	. 8748063538	10.89035561	6.8528505033E-03	. 1859196534
15.07	. 8748748446	10.89910401	6.8453031913E-03	. 1859240795
15.08	. 8749432599	10.90785310	6.8377684265E-03	. 1859285015
15.09	. 8750116000	10.91660288	6.8302461808E-03	. 1859329196
15.10	. 8750798649	10.92535333	6.8227364263E-03	. 1859373337
15.11	. 8751480547	10.93410447	6.8152391351E-03	. 1859417438


15	. 8752161697	10.94285630	6.8077542795E-03	00
15.13	. 8752842099	10.95160880	6.8002818319E-03	. 1859505521
15.14	. 8753521754	10.96036198	6.7928217647E-03	. 1859549504
15.15	. 8754200663	10.96911584	$6.7853740502 \mathrm{E}-03$	. 1859593447
15.16	. 8754878829	10.97787038	6.7779386612E-03	. 1859637350
15.17	. 8755556252	10.98662560	6.7705155701E-03	. 1859681214
15.18	. 8756232932	10.99538149	6.7631047498E-03	. 1859725039
15.19	. 8756908873	11.00413806	$6.7557061729 E-03$	. 1859768824
15.20	. 8757584074	11.01289531	6.7483198125E-03	. 1859812571
15.21	. 8758258537	11.02165323	6.7409456413E-03	. 1859856278
15.22	. 8758932264	11.03041183	6.7335836325E-03	. 1859899946
15.23	. 8759605254	11.03917110	6.7262337590E-03	. 1859943575
15.24	. 8760277511	11.04793104	6.7188959942E-03	. 1859987166
15.25	. 8760949034	11.05669165	6.7115703111E-03	. 1860030717
15.26	. 8761619825	11.06545294	6.7042566831E-03	. 1860074229
15.27	. 8762289886	11.07421489	6.6969550837E-03	. 1860117703
15.28	. 8762959217	11.08297751	6.6896654862E-03	. 1860161138
15.29	. 8763627819	11.09174081	6.6823878642E-03	. 1860204535
15.30	. 8764295695	11.10050477	6.6751221913E-03	. 1860247893
15.31	. 8764962844	11.10926940	6.6678684411E-03	. 1860291212
15.32	. 8765629269	11.11803470	6.6606265876E-03	. 1860334493
15.33	. 8766294970	11.12680066	6.6533966043E-03	. 1860377735
15.34	. 8766959948	11.13556729	6.6461784653E-03	. 1860420940
15.35	. 8767624206	11.14433458	6.6389721446E-03	. 1860464105
15.36	. 8768287743	11.15310253	6.6317776161E-03	. 1860507233
15.37	. 8768950562	11.16187115	6.6245948540E-03	. 1860550323
15.38	. 8769612663	11.17064043	6.6174238325E-03	. 1860593374
15.39	. 8770274047	11.17941038	6.6102645258E-03	. 1860636388
15.40	. 8770934716	11.18818098	6.6031169082E-03	. 1860679363
15.41	. 8771594671	11.19695225	6.5959809542E-03	. 1860722301
15.42	. 8772253913	11.20572417	6.5888566382E-03	. 1860765200
15.43	. 8772912442	11.21449675	6.5817439348E-03	. 1860808062
15.44	. 8773570262	11.22327000	6.5746428186E-03	. 1860850886
15.45	. 8774227371	11.23204389	6.5675532641E-03	. 1860893673
15.46	. 8774883773	11.24081845	6.5604752463E-03	. 1860936421
15.47	. 8775539467	11.24959366	6.5534087399E-03	. 1860979133
15.48	. 8776194455	11.25836953	6.5463537198E-03	. 1861021806
15.49	. 8776848738	11.26714605	6.5393101609E-03	. 1861064443
15.50	. 8777502317	11.27592323	6.5322780383E-03	. 1861107041
15.51	. 8778155194	11.28470106	6.5252573271E-03	. 1861149603
15.52	. 8778807369	11.29347954	6.5182480024E-03	. 1861192127
15.53	. 8779458844	11.30225867	6.5112500395E-03	. 1861234614
15.54	. 8780109620	11.31103845	6.5042634136E-03	. 1861277064
15.55	. 8780759697	11.31981889	6.4972881002E-03	. 1861319477
15.56	. 8781409078	11.32859997	6.4903240746E-03	. 1861361853
15.57	. 8782057762	11.33738171	6.4833713124E-03	. 1861404191
15.58	. 8782705752	11.34616409	6.4764297890E-03	. 1861446493
15.59	. 8783353049	11.35494712	6.4694994803E-03	. 1861488758
15.60	. 8783999652	11.36373079	6.4625803618E-03	. 1861530986
15.61	. 8784645565	11.37251512	6.4556724093E-03	. 1861573177
15.62	. 8785290787	11.38130009	6.4487755986E-03	. 1861615332
15.63	. 8785935320	11.39008570	6.4418899057E-03	. 1861657450
15.64	. 8786579166	11.39887196	6.4350153065E-03	. 1861699531
15.65	. 8787222324	11.40765886	6.4281517770E-03	. 1861741576
15.66	. 8787864796	11.41644640	6.4212992933E-03	. 1861783584
15.67	. 8788506584	11.42523459	6.4144578316E-03	. 1861825556
15.68	. 8789147688	11.43402341	6.4076273682E-03	. 1861867491
15.69	. 8789788110	11.44281288	6.4008078792E-03	. 1861909391
15.70	. 8790427850	11.45160299	6.3939993411E-03	. 1861951253
15.71	. 8791066910	11.46039374	6.3872017302E-03	. 1861993080
15.72	. 8791705291	11.46918512	6.3804150230E-03	. 1862034871
15.73	. 8792342994	11.47797715	6.3736391962E-03	. 1862076625


15.74	. 8792980019	11.48676981	6.3668742262E-03	43
15.75	. 8793616369	11.49556311	6.3601200898E-03	1862160026
15.76	. 8794252043	11.50435704	$6.3533767636 \mathrm{E}-03$	. 1862201672
15.77	. 8794887044	11.51315161	$6.3466442246 \mathrm{E}-03$	. 1862243283
15.78	. 8795521373	11.52194681	$6.3399224495 E-03$	1862284857
15.79	. 8796155029	11.53074265	6.3332114152E-03	1862326396
15.80	. 8796788015	11.53953912	6.3265110988E-03	. 1862367900
15.81	. 8797420332	11.54833623	$6.3198214773 \mathrm{E}-03$	. 1862409367
15.82	. 8798051980	11.55713396	6.3131425278E-03	. 1862450799
15.83	. 8798682961	11.56593233	$6.3064742274 \mathrm{E}-03$	. 1862492195
15.84	. 8799313275	11.57473133	$6.2998165534 \mathrm{E}-03$	. 1862533556
15.85	. 8799942924	11.58353096	6.2931694832E-03	. 1862574882
15.86	. 8800571909	11.59233122	6.2865329939E-03	. 1862616172
15.87	. 8801200231	11.60113210	6.2799070631E-03	. 1862657426
15.88	. 8801827891	11.60993362	6.2732916682E-03	. 1862698646
15.89	. 8802454890	11.61873576	6.2666867868E-03	. 1862739830
15.90	. 8803081229	11.62753853	$6.2600923964 \mathrm{E}-03$	. 1862780979
15.91	. 8803706909	11.63634192	$6.2535084747 \mathrm{E}-03$	. 1862822093
15.92	. 8804331931	11.64514594	6.2469349995E-03	. 1862863171
15.93	. 8804956296	11.65395058	$6.2403719484 \mathrm{E}-03$	. 1862904215
15.94	. 8805580006	11.66275585	6.2338192993E-03	. 1862945224
15.95	. 8806203060	11.67156174	$6.2272770302 \mathrm{E}-03$	. 1862986198
15.96	. 8806825461	11.68036826	$6.2207451189 \mathrm{E}-03$	. 1863027136
15.97	. 8807447210	11.68917539	6.2142235435E-03	. 1863068041
15.98	. 8808068306	11.69798315	6.2077122820E-03	. 1863108910
15.99	. 8808688753	11.70679153	6.2012113126E-03	. 1863149744
16.00	. 8809308549	11.71560053	6.1947206135E-03	. 1863190544
16.01	. 8809927697	11.72441015	6.1882401628E-03	. 1863231310
16.02	. 8810546197	11.73322038	6.1817699390E-03	. 1863272040
16.03	. 8811164051	11.74203124	6.1753099203E-03	. 1863312737
16.04	. 8811781260	11.75084271	6.1688600852E-03	. 1863353399
16.05	. 8812397824	11.75965480	6.1624204121E-03	. 1863394026
16.06	. 8813013744	11.76846751	6.1559908796E-03	. 1863434619
16.07	. 8813629022	11.77728083	6.1495714663E-03	. 1863475178
16.08	. 8814243659	11.78609477	6.1431621508E-03	. 1863515702
16.09	. 8814857655	11.79490932	6.1367629119E-03	. 1863556192
16.10	. 8815471012	11.80372448	6.1303737282E-03	. 1863596648
16.11	. 8816083730	11.81254026	6.1239945785E-03	. 1863637070
16.12	. 8816695811	11.82135665	6.1176254419E-03	. 1863677458
16.13	. 8817307256	11.83017365	6.1112662971E-03	. 1863717812
16.14	. 8817918065	11.83899126	6.1049171232E-03	. 1863758132
16.15	. 8818528239	11.84780949	$6.0985778992 \mathrm{E}-03$	. 1863798418
16.16	. 8819137781	11.85662832	6.0922486042E-03	. 1863838671
16.17	. 8819746689	11.86544776	$6.0859292174 \mathrm{E}-03$	. 1863878889
16.18	. 8820354967	11.87426781	6.0796197179E-03	. 1863919074
16.19	. 8820962614	11.88308847	6.0733200850E-03	. 1863959225
16.20	. 8821569631	11.89190974	6.0670302981E-03	. 1863999342
16.21	. 8822176020	11.90073161	6.0607503364E-03	. 1864039426
16.22	. 8822781781	11.90955409	6.0544801795E-03	. 1864079476
16.23	. 8823386916	11.91837717	6.0482198067E-03	. 1864119493
16.24	. 8823991426	11.92720086	6.0419691977E-03	. 1864159476
16.25	. 8824595311	11.93602516	6.0357283319E-03	. 1864199426
16.26	. 8825198572	11.94485005	6.0294971892E-03	. 1864239342
16.27	. 8825801210	11.95367555	6.0232757490E-03	. 1864279225
16.28	. 8826403227	11.96250165	6.0170639912E-03	. 1864319075
16.29	. 8827004623	11.97132836	6.0108618956E-03	. 1864358892
16.30	. 8827605400	11.98015566	6.0046694420E-03	. 1864398675
16.31	. 8828205558	11.98898357	5.9984866104E-03	. 1864438426
16.32	. 8828805098	11.99781207	5.9923133806E-03	. 1864478143
16.33	. 8829404021	12.00664118	5.9861497328E-03	. 1864517827
16.34	. 8830002328	12.01547088	5.9799956468E-03	. 1864557479
16.35	8830600020	12.02430118	5.9738511030E-03	. 1864597097


16.36	. 8831197098	12.03313208	5.9677160814E-03	83
16.37	. 8831793564	12.04196358	5.9615905622E-03	. 1864676235
16.38	. 8832389417	12.05079567	5.9554745258E-03	. 1864715755
16.39	. 8832984659	12.05962836	5.9493679524E-03	. 1864755243
16.40	. 8833579291	12.06846164	5.9432708224E-03	. 1864794697
16.41	. 8834173313	12.07729551	5.9371831162E-03	. 1864834119
16.42	. 8834766728	12.08612999	5.9311048143E-03	. 1864873508
16.43	. 8835359535	12.09496505	5.9250358973E-03	. 1864912865
16.44	. 8835951735	12.10380070	5.9189763457E-03	. 1864952189
16.45	. 8836543330	12.11263695	5.9129261401E-03	. 1864991481
16.46	. 8837134321	12.12147379	5.9068852612E-03	. 1865030741
16.47	. 8837724707	12.13031122	5.9008536897E-03	. 1865069968
16.48	. 8838314492	12.13914924	5.8948314065E-03	. 1865109163
16.49	. 8838903674	12.14798785	5.8888183923E-03	. 1865148325
16.50	. 8839492256	12.15682705	5.8828146280E-03	. 1865187455
16.51	. 8840080237	12.16566683	5.8768200945E-03	. 1865226553
16.52	. 8840667620	12.17450721	5.8708347728E-03	. 1865265619
16.53	. 8841254405	12.18334817	5.8648586440E-03	. 1865304653
16.54	. 8841840592	12.19218972	5.8588916891E-03	. 1865343655
16.55	. 8842426183	12.20103185	5.8529338892E-03	. 1865382625
16.56	. 8843011179	12.20987457	5.8469852255E-03	. 1865421563
16.57	. 8843595581	12.21871787	5.8410456792E-03	. 1865460469
16.58	. 8844179389	12.22756176	5.8351152317E-03	. 1865499344
16.59	. 8844762604	12.23640623	5.8291938641E-03	. 1865538186
16.60	. 8845345228	12.24525128	5.8232815579E-03	. 1865576997
16.61	. 8845927261	12.25409692	5.8173782945E-03	. 1865615776
16.62	. 8846508704	12.26294314	5.8114840553E-03	. 1865654523
16.63	. 8847089558	12.27178994	5.8055988219E-03	. 1865693239
16.64	. 8847669824	12.28063732	$5.7997225757 \mathrm{E}-03$	. 1865731923
16.65	. 8848249502	12.28948528	5.7938552985E-03	. 1865770576
16.66	. 8848828595	12.29833382	5.7879969719E-03	. 1865809197
16.67	. 8849407102	12.30718293	5.7821475775E-03	. 1865847787
16.68	. 8849985025	12.31603263	5.7763070971E-03	. 1865886345
16.69	. 8850562364	12.32488290	$5.7704755126 \mathrm{E}-03$	. 1865924872
16.70	. 8851139120	12.33373375	5.7646528056E-03	. 1865963368
16.71	. 8851715295	12.34258518	5.7588389582E-03	. 1866001833
16.72	. 8852290888	12.35143718	5.7530339522E-03	. 1866040266
16.73	. 8852865902	12.36028976	5.7472377697E-03	. 1866078668
16.74	. 8853440336	12.36914292	5.7414503926E-03	. 1866117039
16.75	. 8854014192	12.37799664	$5.7356718031 \mathrm{E}-03$	. 1866155379
16.76	. 8854587471	12.38685094	5.7299019832E-03	. 1866193688
16.77	. 8855160173	12.39570582	5.7241409151E-03	. 1866231965
16.78	. 8855732299	12.40456126	5.7183885810E-03	. 1866270212
16.79	. 8856303851	12.41341728	5.7126449631E-03	. 1866308428
16.80	. 8856874829	12.42227387	5.7069100439E-03	. 1866346614
16.81	. 8857445233	12.43113103	$5.7011838055 \mathrm{E}-03$	. 1866384768
16.82	. 8858015066	12.43998876	5.6954662304E-03	. 1866422892
16.83	. 8858584327	12.44884706	$5.6897573011 \mathrm{E}-03$	. 1866460984
16.84	. 8859153017	12.45770593	5.6840570000E-03	. 1866499047
16.85	. 8859721138	12.46656537	5.6783653096E-03	. 1866537078
16.86	. 8860288691	12.47542537	5.6726822125E-03	. 1866575079
16.87	. 8860855675	12.48428595	5.6670076913E-03	. 1866613050
16.88	. 8861422093	12.49314708	5.6613417286E-03	. 1866650989
16.89	. 8861987944	12.50200879	5.6556843072E-03	. 1866688899
16.90	. 8862553230	12.51087106	5.6500354099E-03	. 1866726778
16.91	. 8863117951	12.51973390	5.6443950193E-03	. 1866764626
16.92	. 8863682109	12.52859730	5.6387631183E-03	. 1866802445
16.93	. 8864245704	12.53746126	5.6331396899E-03	. 1866840233
16.94	. 8864808737	12.54632579	5.6275247168E-03	. 1866877990
16.95	. 8865371209	12.55519088	5.6219181822E-03	. 1866915718
16.96	. 8865933121	12.56405653	5.6163200689E-03	. 1866953415
16.97	. 8866494474	12.57292274	5.6107303601E-03	. 1866991083


98	. 8867055267	12.58178952	5.6051490387E-03	. 1867028720
16.99	. 8867615504	12.59065685	5.5995760881E-03	. 1867066327
17.00	. 8868175183	12.59952475	5.5940114912E-03	. 1867103904
17.01	. 8868734306	12.60839320	5.5884552314E-03	. 1867141451
17.02	. 8869292874	12.61726222	5.5829072920E-03	. 1867178968
17.03	. 8869850888	12.62613179	5.5773676561E-03	. 1867216456
17.04	. 8870408348	12.63500192	5.5718363072E-03	. 1867253913
17.05	. 8870965255	12.64387261	5.5663132286E-03	. 1867291341
17.06	. 8871521611	12.65274385	5.5607984038E-03	. 1867328739
17.07	. 8872077415	12.66161565	5.5552918163E-03	. 1867366107
17.08	. 8872632670	12.67048800	5.5497934495E-03	. 1867403446
17.09	. 8873187374	12.67936091	5.5443032870E-03	. 1867440755
17.10	. 8873741531	12.68823438	5.5388213124E-03	. 1867478035
17.11	. 8874295139	12.69710840	5.5333475094E-03	. 1867515284
17.12	. 8874848200	12.70598297	5.5278818615E-03	. 1867552505
17.13	. 8875400716	12.71485809	5.5224243526E-03	. 1867589696
17.14	. 8875952685	12.72373377	5.5169749664E-03	. 1867626857
17.15	. 8876504111	12.73261000	5.5115336867E-03	. 1867663990
17.16	. 8877054992	12.74148678	5.5061004973E-03	. 1867701092
17.17	. 8877605331	12.75036411	5.5006753822E-03	. 1867738166
17.18	. 8878155128	12.75924199	5.4952583252E-03	. 1867775210
17.19	. 8878704383	12.76812042	5.4898493102E-03	. 1867812225
17.20	. 8879253098	12.77699940	$5.4844483214 \mathrm{E}-03$	. 1867849211
17.21	. 8879801273	12.78587892	5.4790553427E-03	. 1867886168
17.22	. 8880348909	12.79475900	5.4736703582E-03	. 1867923095
17.23	. 8880896007	12.80363962	5.4682933521E-03	. 1867959994
17.24	. 8881442568	12.81252079	5.4629243085E-03	. 1867996864
17.25	. 8881988593	12.82140251	5.4575632116E-03	. 1868033704
17.26	. 8882534081	12.83028477	5.4522100456E-03	. 1868070516
17.27	. 8883079035	12.83916757	5.4468647948E-03	. 1868107299
17.28	. 8883623454	12.84805093	5.4415274436E-03	. 1868144053
17.29	. 8884167341	12.85693482	5.4361979762E-03	. 1868180778
17.30	. 8884710694	12.86581926	5.4308763772E-03	. 1868217474
17.31	. 8885253516	12.87470424	5.4255626309E-03	. 1868254142
17.32	. 8885795807	12.88358977	5.4202567218E-03	. 1868290781
17.33	. 8886337568	12.89247583	5.4149586344E-03	. 1868327391
17.34	. 8886878799	12.90136244	5.4096683532E-03	. 1868363973
17.35	. 8887419502	12.91024959	5.4043858629E-03	. 1868400526
17.36	. 8887959676	12.91913728	5.3991111481E-03	. 1868437050
17.37	. 8888499324	12.92802551	$5.3938441934 \mathrm{E}-03$	. 1868473546
17.38	. 8889038446	12.93691428	5.3885849836E-03	. 1868510014
17.39	. 8889577041	12.94580359	5.3833335033E-03	. 1868546453
17.40	. 8890115112	12.95469343	5.3780897375E-03	. 1868582864
17.41	. 8890652660	12.96358382	5.3728536708E-03	. 1868619247
17.42	. 8891189683	12.97247474	5.3676252881E-03	. 1868655601
17.43	. 8891726185	12.98136620	5.3624045743E-03	. 1868691927
17.44	. 8892262165	12.99025819	5.3571915144E-03	. 1868728224
17.45	. 8892797623	12.99915072	5.3519860934E-03	. 1868764494
17.46	. 8893332562	13.00804379	5.3467882961E-03	. 1868800735
17.47	. 8893866981	13.01693739	5.3415981077E-03	. 1868836948
17.48	. 8894400882	13.02583152	5.3364155133E-03	. 1868873133
17.49	. 8894934265	13.03472619	5.3312404979E-03	. 1868909291
17.50	. 8895467130	13.04362139	5.3260730467E-03	. 1868945420
17.51	. 8895999480	13.05251712	5.3209131449E-03	. 1868981521
17.52	. 8896531313	13.06141339	5.3157607777E-03	. 1869017594
17.53	. 8897062632	13.07031018	5.3106159304E-03	. 1869053640
17.54	. 8897593437	13.07920751	5.3054785882E-03	. 1869089657
17.55	. 8898123728	13.08810537	5.3003487366E-03	. 1869125647
17.56	. 8898653507	13.09700376	5.2952263608E-03	. 1869161609
17.57	. 8899182773	13.10590268	5.2901114462E-03	. 1869197543
17.58	. 8899711529	13.11480212	5.2850039784E-03	. 1869233450
17.59	. 8900239775	13.12370210	5.2799039428E-03	. 1869269328


17.60	. 8900767510	13.13260260	5.2748113249E-03	. 1869305180
17.61	. 8901294737	13.14150363	5.2697261102E-03	. 1869341003
17.62	. 8901821456	13.15040519	5.2646482843E-03	. 1869376799
17.63	. 8902347667	13.15930728	5.2595778329E-03	. 1869412568
17.64	. 8902873372	13.16820989	5.2545147415E-03	. 1869448309
17.65	. 8903398570	13.17711302	5.2494589960E-03	. 1869484023
17.66	. 8903923264	13.18601669	5.2444105819E-03	. 1869519709
17.67	. 8904447452	13.19492087	5.2393694851E-03	. 1869555368
17.68	. 8904971138	13.20382558	5.2343356914E-03	. 1869591000
17.69	. 8905494320	13.21273081	5.2293091865E-03	. 1869626604
17.70	. 8906017000	13.22163657	5.2242899564E-03	. 1869662182
17.71	. 8906539178	13.23054285	5.2192779869E-03	. 1869697731
17.72	. 8907060856	13.23944965	5.2142732639E-03	. 1869733254
17.73	. 8907582033	13.24835697	5.2092757735E-03	. 1869768750
17.74	. 8908102711	13.25726481	5.2042855016E-03	. 1869804218
17.75	. 8908622890	13.26617317	5.1993024343E-03	. 1869839660
17.76	. 8909142572	13.27508206	5.1943265576E-03	. 1869875074
17.77	. 8909661756	13.28399146	5.1893578576E-03	. 1869910462
17.78	. 8910180444	13.29290138	5.1843963205E-03	. 1869945822
17.79	. 8910698635	13.30181182	5.1794419323E-03	. 1869981156
17.80	. 8911216332	13.31072278	5.1744946794E-03	. 1870016462
17.81	. 8911733535	13.31963425	5.1695545480E-03	. 1870051742
17.82	. 8912250243	13.32854624	5.1646215243E-03	. 1870086995
17.83	. 8912766459	13.33745875	5.1596955946E-03	. 1870122221
17.84	. 8913282183	13.34637178	5.1547767453E-03	. 1870157421
17.85	. 8913797415	13.35528532	5.1498649627E-03	. 1870192594
17.86	. 8914312156	13.36419937	5.1449602332E-03	. 1870227740
17.87	. 8914826407	13.37311394	5.1400625433E-03	. 1870262859
17.88	. 8915340169	13.38202902	5.1351718794E-03	. 1870297952
17.89	. 8915853442	13.39094462	5.1302882281E-03	. 1870333019
17.90	. 8916366227	13.39986073	5.1254115758E-03	. 1870368058
17.91	. 8916878524	13.40877735	5.1205419091E-03	. 1870403072
17.92	. 8917390335	13.41769449	5.1156792146E-03	. 1870438059
17.93	. 8917901660	13.42661213	5.1108234790E-03	. 1870473019
17.94	. 8918412500	13.43553029	5.1059746888E-03	. 1870507953
17.95	. 8918922855	13.44444896	5.1011328309E-03	. 1870542861
17.96	. 8919432727	13.45336814	5.0962978919E-03	. 1870577742
17.97	. 8919942115	13.46228782	5.0914698585E-03	. 1870612597
17.98	. 8920451021	13.47120802	5.0866487176E-03	. 1870647426
17.99	. 8920959445	13.48012873	5.0818344561E-03	. 1870682229
18.00	. 8921467388	13.48904994	5.0770270606E-03	. 1870717005
18.01	. 8921974851	13.49797166	5.0722265182E-03	. 1870751756
18.02	. 8922481834	13.50689389	5.0674328156E-03	. 1870786480
18.03	. 8922988338	13.51581662	5.0626459400E-03	. 1870821178
18.04	. 8923494363	13.52473986	5.0578658782E-03	. 1870855850
18.05	. 8923999911	13.53366361	5.0530926173E-03	. 1870890496
18.06	. 8924504982	13.54258786	5.0483261443E-03	. 1870925116
18.07	. 8925009576	13.55151262	5.0435664463E-03	. 1870959710
18.08	. 8925513695	13.56043788	5.0388135104E-03	. 1870994279
18.09	. 8926017339	13.56936365	5.0340673236E-03	. 1871028821
18.10	. 8926520509	13.57828992	5.0293278732E-03	. 1871063338
18.11	. 8927023205	13.58721669	5.0245951464E-03	. 1871097828
18.12	. 8927525428	13.59614396	5.0198691304E-03	. 1871132293
18.13	. 8928027179	13.60507174	5.0151498125E-03	. 1871166733
18.14	. 8928528459	13.61400002	5.0104371798E-03	. 1871201146
18.15	. 8929029267	13.62292880	5.0057312198E-03	. 1871235534
18.16	. 8929529605	13.63185808	5.0010319198E-03	. 1871269897
18.17	. 8930029473	13.64078786	$4.9963392672 \mathrm{E}-03$	. 1871304233
18.18	. 8930528873	13.64971814	4.9916532493E-03	. 1871338544
18.19	. 8931027804	13.65864891	4.9869738537E-03	. 1871372830
18.20	. 8931526268	13.66758019	4.9823010677E-03	. 1871407090
18.21	. 8932024265	13.67651197	4.9776348789E-03	. 1871441325


18.22	. 8932521795	13.68544424	4.9729752748E-03	
18.23	. 8933018860	13.69437701	4.9683222429E-03	. 1871509718
18.24	. 8933515460	13.70331028	4.9636757709E-03	1871543876
18.25	. 8934011595	13.71224404	4.9590358463E-03	. 1871578009
18.26	. 8934507267	13.72117830	4.9544024568E-03	. 1871612117
18.27	. 8935002476	13.73011305	4.9497755901E-03	1871646200
18.28	. 8935497223	13.73904830	4.9451552339E-03	. 1871680257
18.29	. 8935991507	13.74798405	$4.9405413758 \mathrm{E}-03$	1871714289
18.30	. 8936485331	13.75692029	4.9359340037E-03	1871748296
18.31	. 8936978694	13.76585702	4.9313331053E-03	. 1871782278
18.32	. 8937471598	13.77479424	4.9267386685E-03	. 1871816235
18.33	. 8937964042	13.78373196	$4.9221506812 \mathrm{E}-03$	. 1871850166
18.34	. 8938456028	13.79267017	4.9175691311E-03	. 1871884073
18.35	. 8938947556	13.80160887	4.9129940061E-03	. 1871917954
18.36	. 8939438627	13.81054807	$4.9084252944 \mathrm{E}-03$	. 1871951811
18.37	. 8939929242	13.81948775	4.9038629836E-03	. 1871985643
18.38	. 8940419400	13.82842793	4.8993070620E-03	1872019450
18.39	. 8940909103	13.83736859	4.8947575175E-03	. 1872053232
18.40	. 8941398352	13.84630974	$4.8902143380 \mathrm{E}-03$	. 1872086989
18.41	. 8941887146	13.85525139	4.8856775118E-03	1872120721
18.42	. 8942375488	13.86419352	4.8811470269E-03	. 1872154428
18.43	. 8942863376	13.87313614	4.8766228715E-03	. 1872188111
18.44	. 8943350812	13.88207924	4.8721050336E-03	1872221769
18.45	. 8943837797	13.89102284	$4.8675935015 \mathrm{E}-03$	. 1872255402
18.46	. 8944324331	13.89996692	$4.8630882634 \mathrm{E}-03$	. 1872289011
18.47	. 8944810415	13.90891149	4.8585893076E-03	. 1872322595
18.48	. 8945296049	13.91785654	4.8540966222E-03	. 1872356155
18.49	. 8945781235	13.92680208	4.8496101957E-03	. 1872389690
18.50	. 8946265972	13.93574810	4.8451300163E-03	. 1872423200
18.51	. 8946750261	13.94469461	4.8406560723E-03	. 1872456686
18.52	. 8947234103	13.95364160	4.8361883522E-03	. 1872490147
18.53	. 8947717499	13.96258908	4.8317268444E-03	. 1872523585
18.54	. 8948200449	13.97153704	4.8272715372E-03	. 1872556997
18.55	. 8948682953	13.98048548	4.8228224193E-03	. 1872590385
18.56	. 8949165013	13.98943440	4.8183794789E-03	. 1872623749
18.57	. 8949646629	13.99838381	4.8139427047E-03	. 1872657089
18.58	. 8950127802	14.00733370	4.8095120852E-03	. 1872690404
18.59	. 8950608532	14.01628407	4.8050876089E-03	. 1872723695
18.60	. 8951088820	14.02523491	$4.8006692645 \mathrm{E}-03$	. 1872756962
18.61	. 8951568666	14.03418624	$4.7962570406 \mathrm{E}-03$	. 1872790205
18.62	. 8952048071	14.04313805	4.7918509257E-03	. 1872823424
18.63	. 8952527036	14.05209034	$4.7874509087 \mathrm{E}-03$	. 1872856618
18.64	. 8953005562	14.06104311	$4.7830569781 \mathrm{E}-03$	. 1872889788
18.65	. 8953483648	14.06999635	$4.7786691228 \mathrm{E}-03$	. 1872922935
18.66	. 8953961296	14.07895007	$4.7742873314 \mathrm{E}-03$	1872956057
18.67	. 8954438506	14.08790427	$4.7699115928 \mathrm{E}-03$	1872989155
18.68	. 8954915278	14.09685895	$4.7655418958 \mathrm{E}-03$	. 1873022230
18.69	. 8955391614	14.10581410	4.7611782291E-03	. 1873055280
18.70	. 8955867514	14.11476973	$4.7568205816 \mathrm{E}-03$	. 1873088307
18.71	. 8956342979	14.12372584	$4.7524689423 \mathrm{E}-03$	1873121309
18.72	. 8956818008	14.13268242	$4.7481232999 \mathrm{E}-03$	. 1873154288
18.73	. 8957292603	14.14163947	$4.7437836436 \mathrm{E}-03$	. 1873187243
18.74	. 8957766765	14.15059700	4.7394499621E-03	. 1873220174
18.75	. 8958240494	14.15955501	4.7351222446E-03	. 1873253082
18.76	. 8958713790	14.16851348	$4.7308004800 \mathrm{E}-03$	. 1873285965
18.77	. 8959186654	14.17747243	$4.7264846573 \mathrm{E}-03$	. 1873318825
18.78	. 8959659087	14.18643186	$4.7221747656 \mathrm{E}-03$	. 1873351662
18.79	. 8960131089	14.19539175	4.7178707940E-03	. 1873384474
18.80	. 8960602661	14.20435212	$4.7135727317 \mathrm{E}-03$	. 1873417263
18.81	. 8961073804	14.21331296	4.7092805676E-03	. 1873450029
18.82	. 8961544517	14.22227427	$4.7049942911 \mathrm{E}-03$	. 1873482771
18.83	. 8962014803	14.23123605	4.7007138913E-03	. 1873515490


84	8962484660	14.24019830	4.6964393573E-03	1873548185
18.85	. 8962954091	14.24916102	4.6921706785E-03	1873580856
18.86	. 8963423095	14.25812420	$4.6879078441 \mathrm{E}-03$	1873613504
18.87	. 8963891673	14.26708786	$4.6836508434 \mathrm{E}-03$	. 1873646129
18.88	. 8964359825	14.27605199	$4.6793996657 \mathrm{E}-03$	. 1873678730
18.89	. 8964827553	14.28501658	4.6751543003E-03	. 1873711308
18.90	. 8965294856	14.29398164	$4.6709147366 \mathrm{E}-03$	1873743863
18.91	. 8965761736	14.30294717	$4.6666809639 \mathrm{E}-03$	1873776395
18.92	. 8966228193	14.31191317	$4.6624529718 \mathrm{E}-03$	1873808903
18.93	. 8966694227	14.32087963	4.6582307495E-03	. 1873841388
18.94	. 8967159839	14.32984655	$4.6540142867 \mathrm{E}-03$	. 1873873850
18.95	. 8967625030	14.33881395	$4.6498035727 \mathrm{E}-03$	1873906288
18.96	. 8968089800	14.34778180	$4.6455985970 \mathrm{E}-03$	. 1873938704
18.97	. 8968554150	14.35675013	4.6413993493E-03	. 1873971096
18.98	. 8969018080	14.36571891	$4.6372058189 \mathrm{E}-03$	. 1874003465
18.99	. 8969481591	14.37468816	4.6330179956E-03	. 1874035812
19.00	. 8969944684	14.38365788	4.6288358690E-03	1874068135
19.01	. 8970407358	14.39262805	4.6246594285E-03	. 1874100435
19.02	. 8970869616	14.40159869	4.6204886640E-03	. 1874132713
19.03	. 8971331456	14.41056979	$4.6163235650 \mathrm{E}-03$	. 1874164967
19.04	. 8971792881	14.41954135	4.6121641213E-03	. 1874197199
19.05	. 8972253889	14.42851338	4.6080103225E-03	. 1874229407
19.06	. 8972714483	14.43748586	4.6038621585E-03	1874261593
19.07	. 8973174662	14.44645880	4.5997196190E-03	. 1874293756
19.08	. 8973634427	14.45543221	4.5955826937E-03	. 1874325896
19.09	. 8974093779	14.46440607	4.5914513726E-03	1874358014
19.10	. 8974552717	14.47338040	$4.5873256454 \mathrm{E}-03$	. 1874390108
19.11	. 8975011244	14.48235518	4.5832055019E-03	1874422180
19.12	. 8975469359	14.49133042	$4.5790909321 \mathrm{E}-03$	1874454230
19.13	. 8975927062	14.50030612	4.5749819259E-03	. 1874486256
19.14	. 8976384355	14.50928227	4.5708784732E-03	1874518260
19.15	. 8976841238	14.51825889	4.5667805640E-03	. 1874550242
19.16	. 8977297712	14.52723596	4.5626881882E-03	. 1874582201
19.17	. 8977753776	14.53621348	$4.5586013358 \mathrm{E}-03$	1874614137
19.18	. 8978209432	14.54519146	$4.5545199969 \mathrm{E}-03$	. 1874646051
19.19	. 8978664680	14.55416990	4.5504441614E-03	. 1874677942
19.20	. 8979119521	14.56314879	4.5463738195E-03	. 1874709811
19.21	. 8979573955	14.57212814	4.5423089612E-03	. 1874741658
19.22	. 8980027983	14.58110794	4.5382495767E-03	. 1874773482
19.23	. 8980481605	14.59008819	$4.5341956560 \mathrm{E}-03$	. 1874805284
19.24	. 8980934822	14.59906890	4.5301471894E-03	. 1874837063
19.25	. 8981387635	14.60805006	4.5261041670E-03	1874868821
19.26	. 8981840043	14.61703168	4.5220665790E-03	1874900555
19.27	. 8982292048	14.62601374	4.5180344157E-03	. 1874932268
19.28	. 8982743650	14.63499626	4.5140076672E-03	1874963958
19.29	. 8983194850	14.64397923	$4.5099863238 \mathrm{E}-03$	1874995627
19.30	. 8983645648	14.65296265	4.5059703759E-03	. 1875027273
19.31	. 8984096044	14.66194652	4.5019598137E-03	. 1875058896
19.32	. 8984546040	14.67093084	4.4979546275E-03	. 1875090498
19.33	. 8984995635	14.67991561	4.4939548078E-03	. 1875122078
19.34	. 8985444831	14.68890083	$4.4899603449 \mathrm{E}-03$	1875153635
19.35	. 8985893628	14.69788650	4.4859712291E-03	. 1875185171
19.36	. 8986342026	14.70687262	4.4819874510E-03	. 1875216684
19.37	. 8986790025	14.71585919	4.4780090009E-03	. 1875248176
19.38	. 8987237628	14.72484620	4.4740358693E-03	. 1875279646
19.39	. 8987684833	14.73383366	4.4700680466E-03	. 1875311093
19.40	. 8988131641	14.74282157	4.4661055235E-03	. 1875342519
19.41	. 8988578054	14.75180993	4.4621482904E-03	. 1875373923
19.42	. 8989024071	14.76079873	4.4581963378E-03	. 1875405305
19.43	. 8989469693	14.76978797	4.4542496564E-03	. 1875436665
19.44	. 8989914921	14.77877767	4.4503082367E-03	. 1875468004
19.45	. 8990359755	14.78776780	4.4463720693E-03	. 1875499320


19.46	8990804196	14.79675839	$4.4424411449 \mathrm{E}-03$	15
19.47	. 8991248244	14.80574941	$4.4385154540 \mathrm{E}-03$	1875561888
19.48	. 8991691899	14.81474088	4.4345949875E-03	1875593140
19.49	. 8992135163	14.82373280	$4.4306797359 \mathrm{E}-03$	. 1875624370
19.50	. 8992578035	14.83272515	4.4267696900E-03	. 1875655578
19.51	. 8993020517	14.84171795	4.4228648405E-03	1875686765
19.52	. 8993462608	14.85071119	4.4189651782E-03	1875717930
19.53	. 8993904310	14.85970488	4.4150706939E-03	1875749073
19.54	8994345623	14.86869900	4.4111813782E-03	1875780195
19.55	. 8994786547	14.87769357	4.4072972222E-03	1875811296
19.56	. 8995227082	14.88668857	$4.4034182166 \mathrm{E}-03$	1875842374
19.57	. 8995667230	14.89568402	$4.3995443522 \mathrm{E}-03$	1875873432
19.58	. 8996106991	14.90467991	4.3956756199E-03	. 1875904468
19.59	. 8996546366	14.91367624	$4.3918120107 \mathrm{E}-03$	. 1875935483
19.60	. 8996985354	14.92267300	$4.3879535155 \mathrm{E}-03$	. 1875966476
19.61	. 8997423957	14.93167021	$4.3841001251 \mathrm{E}-03$	. 1875997448
19.62	. 8997862174	14.94066785	$4.3802518306 \mathrm{E}-03$	1876028399
19.63	. 8998300007	14.94966593	$4.3764086230 \mathrm{E}-03$	. 1876059328
19.64	. 8998737456	14.95866445	$4.3725704932 \mathrm{E}-03$	. 1876090236
19.65	. 8999174521	14.96766341	$4.3687374322 \mathrm{E}-03$	. 1876121123
19.66	. 8999611204	14.97666280	$4.3649094311 \mathrm{E}-03$	. 1876151989
19.67	. 9000047503	14.98566263	$4.3610864810 \mathrm{E}-03$	1876182833
19.68	. 9000483421	14.99466289	4.3572685729E-03	. 1876213656
19.69	9000918957	15.00366359	$4.3534556979 \mathrm{E}-03$	1876244458
19.70	9001354112	15.01266473	4.3496478472E-03	1876275239
19.71	9001788887	15.02166630	$4.3458450118 \mathrm{E}-03$	1876305999
19.72	. 9002223282	15.03066831	$4.3420471831 \mathrm{E}-03$	1876336738
19.73	. 9002657297	15.03967075	$4.3382543520 \mathrm{E}-03$	. 1876367456
19.74	. 9003090933	15.04867362	$4.3344665098 \mathrm{E}-03$	. 1876398153
19.75	. 9003524190	15.05767693	$4.3306836478 \mathrm{E}-03$	1876428828
19.76	. 9003957070	15.06668067	$4.3269057572 \mathrm{E}-03$	1876459483
19.77	. 9004389571	15.07568484	4.3231328292E-03	. 1876490117
19.78	. 9004821696	15.08468945	$4.3193648551 \mathrm{E}-03$	1876520730
19.79	. 9005253445	15.09369449	$4.3156018261 \mathrm{E}-03$	. 1876551322
19.80	. 9005684817	15.10269996	$4.3118437337 \mathrm{E}-03$	. 1876581894
19.81	. 9006115814	15.11170586	$4.3080905691 \mathrm{E}-03$	. 1876612444
19.82	. 9006546435	15.12071219	$4.3043423238 \mathrm{E}-03$	. 1876642973
19.83	9006976682	15.12971895	4.3005989889E-03	1876673482
19.84	. 9007406555	15.13872614	$4.2968605561 \mathrm{E}-03$	1876703970
19.85	. 9007836054	15.14773376	$4.2931270165 \mathrm{E}-03$	. 1876734438
19.86	. 9008265181	15.15674181	$4.2893983618 \mathrm{E}-03$	. 1876764884
19.87	. 9008693934	15.16575029	$4.2856745833 \mathrm{E}-03$	. 1876795310
19.88	. 9009122316	15.17475920	4.2819556725E-03	. 1876825715
19.89	. 9009550326	15.18376854	4.2782416209E-03	. 1876856100
19.90	. 9009977964	15.19277830	4.2745324199E-03	. 1876886464
19.91	. 9010405232	15.20178849	4.2708280612E-03	. 1876916807
19.92	. 9010832130	15.21079911	4.2671285362E-03	. 1876947130
19.93	. 9011258658	15.21981016	4.2634338365E-03	. 1876977432
19.94	. 9011684817	15.22882163	$4.2597439537 \mathrm{E}-03$	. 1877007714
19.95	. 9012110607	15.23783353	4.2560588793E-03	. 1877037975
19.96	. 9012536029	15.24684585	4.2523786050E-03	. 1877068216
19.97	. 9012961083	15.25585860	4.2487031225E-03	. 1877098436
19.98	. 9013385770	15.26487177	4.2450324233E-03	. 1877128636
19.99	. 9013810090	15.27388537	$4.2413664991 \mathrm{E}-03$	. 1877158816
20.00	. 9014234043	15.28289939	4.2377053417E-03	1877188975

```
V(x) = 1/wzl (1/x)
S(x) = ING[0,x,du/wz\rceil(1/u)]
D(x) = d/dx[V(x)]
car(x) = x*wzl(x)*ei{-2*]n[wzl(1/x)]}
```

We hope you have enjoyed our "book"! Thank you for reading it.

