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UNIQUENESS OF HOLOMORPHIC SUPERLOGARITHMS

Abstract. We give a simple uniqueness criterion for holomorphic

Abel functions with application to superlogarithm and superexponen-

tial/tetration.

1. Introduction

There is a lot of discussion about the “true” fractional iterates of the

function ex in the mathematical community. Dating back to 1950 Kneser

[1] proved the existence of analytic fractional iterates. However Szekeres

(a pioneer in developing the theory of fractional iteration [4]) states in

[3]:

“The solution of Kneser does not really solve the problem of ‘best’

fractional iterates of ex. Quite apart from practical difficulties involved in

the calculation of Kneser’s function on the real axis, there is no indication

whatsoever that the function will grow more regularly to infinity than any

other solution. There is certainly no uniqueness attached to the solution;

in fact if g(x) is a real analytic function with period 1 and g′(x) + 1 > 0

(e.g g(x) = 1
2
sin(2πx) then B∗(x) = B(x) + g(B(x)) is also an analytic

Abel function of ex which in general yields a different solution of the

equation.”

By withdrawing our attention from the purely real analytic behaviour

of the Abel function to the behaviour in the complex plane we can succeed

in giving a simple uniqueness criterion for the above mentioned Abel

function (which we call superlogarithm here) which in turn determines

also the fractional iterates of ex.

Not only can we show that Kneser’s solution is indeed this unique solu-

tion, but we have also good means to numerically compute this solution

and the corresponding fractional iterates of ex (also of bx for b > e1/e in

generalization) by a method developed in [2]. Several other methods to
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numerically compute holomorphic fractional iterates of ex or the holo-

morphic superlogarithm have emerged in the past years (for example one

is given in [6]). A future research goal would be to put them on a thor-

ough theoretic base (proving convergence and holomorphy) and to verify

the here given uniqueness criterion, with the result of a beautiful union

of several quite different approaches to the problem.

2. The Superexponential

Instead of using the terms “generalized logarithm” and “generalized

exponential” as done by Walker in [5], or “ultra exponential” as done

by Hooshmand in [8], we stick to the convention of [7] with the more

succinct words “superexponential” and “superlogarithm”.

A superexponential to base b > 0 is a function f that satisfies

f(0) = 1(1)

f(z + 1) = expb(f(z))(2)

and a superlogarithm is the inverse of a superexponential, or a function

g that satisfies:

g(1) = 0(3)

g(expb(z)) = g(z) + 1(4)

where expb(z) = bz = exp(ln(b)z). For integer values of z any superexpo-

nential is already determined to be just the z-times application of expb

to 1.

f(z) = sexpb(z) = exp z
b (1) = expb

(

expb

(
... expb(1)...

))

︸ ︷︷ ︸

z exponentials

.(5)

The question is however how to properly define the superexponential to

non-integer values of z. A non-analytic solution with a uniqueness crite-

rion was given in [8]. A numerical method to compute the coefficients of

the powerseries development at 0 of a superlogarithm was given (though

without proof of convergence) in [6]. We use here the robust and fast

numerical method given in [2] to compute a/the holomorphic extension.

This method is originally described for b = e but can be extended to

arbitrary bases b > e1/e. For real values of the argument, this superex-

ponential is plotted in figure 1 for b=e, b=2 and b=exp(1/e) with thick

solid, dashed and thin curves.

A holomorphic superexponential is expected to have a singularity or

branchpoint at integers ≤ −2 at least on some branch, because from

f(z+1) = expb(f(z)) one would conclude that f(z−1) = logb(f(z)) on
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Figure 1. Holomorphic superexponential at base b = e

(thick solid), b=2 (dashed), b=exp(1/e) (thin solid) and

b=
√

2 (dotted) on the real axis.

some branch and by f(0) = 1 is then f(−1) = 0 and f(−2) = logb(0).

To exclude branching we restrict superexponentials to

C = C\{x ∈ R : x ≤ −2} .(6)

3. Uniqueness

Conventions: Usually one regards a holomorphic function only on an

open and connected set (domain). Saying that f is (bi)holomorphic

on (an arbitrary set) G here means that f is (bi)holomorphic on some

domain D ⊇ G.

We call a function h holomorphic on H a d 7→ c Abel function of F iff

h(d) = c(7)

h(F (z)) = h(z) + 1(8)

for all z such that z, F (z) ∈ H .

We call a region H an initial region of F iff F (z) /∈ H for all z ∈ H

and the boundary ∂H without the fixed points of F make up two disjoint

paths ∂1H and ∂2H such that F maps ∂1H bijectively to ∂2H . For
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simplicity we additionally demand that ∂1H ⊆ H and (∂2H) ∩ H = ∅.
We call the initial region simple iff ∂1H is homeomorphic to (0, 1), i.e. if

there is a bijective curve γ : (0, 1) ↔ ∂1H .

For example, the function log(z) holomorphic on H = C\{x ∈ R : x ≤
0} is a 1 7→ 0 (or e 7→ 1) Abel function of F (z) = ez and the annulus

with outer radius e (excluding) and inner radius 1 (including) is an initial

region of F that is not simple. Another example is the function z 7→ z/b,

b 6= 0, holomorphic on H = C is a b 7→ 1 Abel function of F (z) = z + b.

The strip {bz : 0 ≤ ℜ(z) < 1} is an initial region of F that is simple.

Theorem 1. For each holomorphic function F and each simple initial

region HI of F with d ∈ HI there is at most one d 7→ c Abel func-

tion h that maps HI biholomorphically to a region with above and below

unbounded imaginary part.

Proof. Assume there are two such Abel functions f and g holomorphic

on HI . Let H ⊃ HI be a domain such that f : H ↔ Tf and g : H ↔
Tg are still biholomorphic on H . For the rest of this proof we write h

when referring to f as well as to g. Th has above and below unbounded

imaginary part. The inverse function h−1 : Th ↔ H satisfies:

h−1(z + 1) = F
(
h−1(z)

)

for all z such that z, z +1 ∈ Th. So we have two biholomorphic functions

δf : Tf ↔ Tg, δf := g ◦ f−1 and δg : Tg ↔ Tf , δg := f ◦ g−1 with the

property

δf (z + 1) = g
(
f−1(z + 1)

)
= g

(
F

(
f−1(z)

))

= g
(
f−1(z)

)
+ 1 = δf(z) + 1

for each z with z, z+1 ∈ Tf ; and generally

δh(z+1) = δh(z) + 1

for each z with z, z+1 ∈ Th.

Let ∂1H being bijectively parametrized by γ1 : (0, 1) ↔ ∂1H and

parametrize ∂2H by γ2 = F ◦ γ1 : (0, 1) ↔ ∂2H . Without restriction we

can assume that h is holomorphic on ∂2H too (otherwise we continue it

by (8)). Then h(γ2(t)) = h(γ1(t))+1 for t ∈ (0, 1) by (8). Hence h maps

H to a region such that the intersection with a horizontal straight line

with imaginary part y is a line of length 1 for each real y. It is closed at

the left side and open at the right side.

By the previous property the by integer k translated domains Th + k

cover the whole complex plane. We define δh,k : Th + k → C by δh,k(z +
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Figure 2. Contours logb(ℓ), ℓ and bℓ in the complex z-

plane, for base b=e.

k) = δh(z) + k. By our property δh(z + 1) = δh(z) + 1 the function δh,k

and δh,k+1 coincide on the open non-empty simply connected set (Th +

k)∩ (Th +k+1). In conclusion δh can be continued to the whole complex

plane. So lets consider δh to be an entire functions from here.

Now the sets Tf and Tg have a vicinity ∆c = Tf ∩ Tg of c in common

by (7). By δf(c) = c = δg(c) we get that ∆ := ∆c ∩ δf (∆c) ∩ δg(∆c) is

a non-empty open set and δf and δg are injective there. For z ∈ ∆ we

have:

δf

(
δg(z)

)
= g

(

f−1
(
f(g−1(z))

))

= g
(
g−1(z)

)
= z

δg

(
δf (z)

)
= f

(

g−1
(
g(f−1(z))

))

= f
(
f−1(z)

)
= z

So we see that the entire functions δf and δg are inverses of each other.

But the only entire functions that have an entire inverse are linear func-

tions. By the values δf (c) = c and δf (c + 1) = c + 1 it can only be the

identity. So g(f−1(z)) = z for z ∈ ∆ and hence g = f on H . �

This theorem can not be applied to the uniqueness of the logarithm

on the annulus because it is not even holomorphic there (and is anyway

not a simple initial region). But this lemma can be applied to the b 7→ 1

Abel function of F (z) = z + b. It is unique under the condition that it

maps the strip {bz : 0 ≤ ℜ(z) < 1} biholomorpically to some region with

unbounded imaginary part.

Now the somewhat more interesting application is about the unique-

ness of the superlogarithm. We call an Abel function of expb a superlog-

arithm to base b short slogb.
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Figure 3. Mapping of G with function sloge. The shaded

region is the map of region G, id est, slog(G). The left
hand side of the strip is slog(ℓ); the right hand side is

slog
(
exp(ℓ)

)
.

To apply our lemma we first have to find an initial region of expb. A

straight forward choice G is depicted in figure 2. Here L is the fixed

point of logb in the upper half plane. The straight line between L and

its complex conjugate L∗ is given by ℓ(t) = ℜ(L) + iℑ(L)t for −1<t<1,

then the region G bounded by ℓ (inclusive) and bℓ (exclusive) is an initial

region.

The contour bℓ lies on the circle with radius |L|, shown with a dashed

line. This can be easily derived. By bL = L we know that bℜ(L) = |bL| =

|L| and hence bℓ(t) = bℜ(L)+iℑ(L)t = |L|biℑ(L)t which is an arc with radius

|L| around 0.

The superlogarithm sloge computed in [2] as inverse of the superexpo-

nential sexpe indeed satisfies (at least graphically) the biholomorphism

condition on G, hence it is the only such super logarithm. The im-

age sloge(G) is depicted in figure 3. Basically this figure reproduces

the part of the figure from [2]; f = sexpe(z) is plotted with levels of
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constant modulus and constant phase in the complex z-plane. Lev-

els |f | = e−2, e−1, 1, e, e2, e3, e4 are shown with thick curves. Levels

arg(f) = ±1,±2,±π are shown with thick curves. Intermediate levels

are shown with thin lines. The left bound of the region G corresponds

to ℜ(f) = ℜ(L); the right hand side corresponds to |f | = |L|.
Moreover we get a uniqueness result regarding the Abel function Ψ of

exp constructed by Kneser. His construction uses the Riemann mapping

theorem and hence does not directly yield an evaluation algorithm. His

region H0 in the upper half plane together with its conjugate H0
∗ is just

our region G with its boundary, G = H0 ∪H0
∗. By Kneser’s construction

Ψ is biholomorphic on H0 \ {c} (where c in Kneser’s notation is just L

in our notation) and can be continued to H∗
0 on the lower half plane by

Ψ(z∗) = Ψ(z)∗ (because is real analytic on the real axis). Hence it is

biholomorphic on G.

Further H0 is mapped to the upper halpflane such that all translations

by integer k cover the whole upper halfplane. Hence Ψ(H0) must have

above unbounded imaginary part. The proof of Kneser similarly succeeds

for the functions expb, b > e1/e, (that have no real fixed point) instead of

exp.

Corollary 1. There is one and only one holomorphic superlogarithm to

base b > e1/e that maps G (or logb(G) or expb(G)) biholomorphically to

some region with above and below unbounded imaginary part. This is the

Abel function Ψ constructed in [2].

Corollary 2. There is one and only one holomorphic superexponential

to base b > e1/e that maps some region with above and below unbounded

imaginary part biholomorphically to G.

4. The Fractional Iterates of the Exponential

The combination of sexp and slog allows to define the fractional power

of the exponential (this is the usual way how to derive fractional iterates

via an Abel function, it is described for example in [4]).

expc
b(z) = sexpb

(
c + slogb(z)

)
,(9)

b > e1/e , z ∈ C , c + slogb(z) ∈ C

For b=e and several real c, we plot expc(x) versus x in figure 4. For

c = 1, this is indeed the usual exponential; and, for c = 0, this is the

identity function.
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Figure 4. Function y = expc(x) calculated by equation

(9) for c = 0,±0.1,±0.5,±0.9,±1,±2 versus x.
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